首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
斑马鱼中囊胚过渡(MBT)始于受精卵的第10次卵裂,此时亦伴有细胞周期延长,分裂同步性丧失,合子型基因开始转录活化,胚胎细胞开始具备运动迁移能力等现象。斑马鱼MBT。的发生依赖于胚胎细胞的核质比,胚胎细胞周期中的G1时相则只有在合子型基因组开始被转录活化后才能出现。细胞周期检验点的激活可能也是受转录调控的,但中期检验点对DNA复制抑制状态的响应不仅在MBT前后、甚至在MBT前的不同阶段也可能有具体作用途径的差异。活化的P38蛋白在胚胎中的不对称分布是维持卵裂阶段细胞分裂同步性的关键因素。尽管大规模的合子型基因的表达发生在MBT开始后,也有少数与胚层分化有关的合子型基因是在MBT。前表达的,还有一些既有母型表达也有合子型表达的基因在MBT前后分别参与不同的信号途径来调控胚胎的发育与分化。  相似文献   

6.
Cell cycle checkpoints that are engaged in response to damaged and unreplicated DNA may serve additional, constitutive functions. In the developing Xenopus laevis embryo, the checkpoint kinase Chk1 is transiently activated at the midblastula transition (MBT), a period of extensive cell cycle remodeling including the acquisition of cell cycle checkpoints. The timing of many cell cycle remodeling events at the MBT, such as the lengthening of cell cycles, depends upon a critical nucleocytoplasmic (N/C) ratio. However, other events, including the degradation of maternal cyclin E, do not depend upon the N/C ratio, and are regulated by an autonomous developmental timer. To better understand what regulates Chk1 activation at the MBT, embryos were treated with aphidicolin, at different developmental times and for different lengths of time, to reduce the DNA content at the MBT. Chk1 was activated at the MBT in these embryos establishing that Chk1 activation occurs independently of the N/C ratio. Cdc25A is normally phosphorylated by Chk1 at the MBT and then degraded. The degradation of Cdc25A demonstrated partial dependence on DNA content, suggesting that factors other than Chk1 regulate its degradation. When the cyclin E developmental timer was disrupted with the Cdk2 inhibitor Δ34-Xic1, Chk1 was still activated at the MBT, indicating that activation of Chk1 at the MBT was not directly linked to the cyclin E timer. Conversely, unreplicated or damaged DNA, delayed the degradation of cyclin E at the MBT, indicating that the cyclin E/Cdk2 timer is sensitive to engagement of cell cycle checkpoints.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Checkpoint pathways inhibit cyclin-dependent kinases (Cdks) to arrest cell cycles when DNA is damaged or unreplicated. Early embryonic cell cycles of Xenopus laevis lack these checkpoints. Completion of 12 divisions marks the midblastula transition (MBT), when the cell cycle lengthens, acquiring gap phases and checkpoints of a somatic cell cycle. Although Xenopus embryos lack checkpoints prior to the MBT, checkpoints are observed in cell-free egg extracts supplemented with sperm nuclei. These checkpoints depend upon the Xenopus Chk1 (XChk1)-signaling pathway. To understand why Xenopus embryos lack checkpoints, xchk1 was cloned, and its expression was examined and manipulated in Xenopus embryos. Although XChk1 mRNA is degraded at the MBT, XChk1 protein persists throughout development, including pre-MBT cell cycles that lack checkpoints. However, when DNA replication is blocked, XChk1 is activated only after stage 7, two cell cycles prior to the MBT. Likewise, DNA damage activates XChk1 only after the MBT. Furthermore, overexpression of XChk1 in Xenopus embryos creates a checkpoint in which cell division arrests, and both Cdc2 and Cdk2 are phosphorylated on tyrosine 15 and inhibited in catalytic activity. These data indicate that XChk1 signaling is intact but blocked upstream of XChk1 until the MBT.  相似文献   

14.
15.
16.
17.
18.
At the Xenopus midblastula transition (MBT), cell cycles lengthen, and checkpoints that respond to damaged or unreplicated DNA are established. The MBT is triggered by a critical nucleocytoplasmic (N/C) ratio; however, the molecular basis for its initiation remains unknown. In egg extracts, activation of Chk1 checkpoint kinase requires the adaptor protein Claspin, which recruits Chk1 for phosphorylation by ATR. At the MBT in embryos, Chk1 is transiently activated to lengthen the cell cycle. We show that Xenopus Claspin is phosphorylated at the MBT at both DNA replication checkpoint-dependent and -independent sites. Further, in egg extracts, Claspin phosphorylation depends on a threshold N/C ratio, but occurs even when ATR is inhibited. Not all phosphorylation that occurs at the MBT is reproduced in egg extracts. Our results identify Claspin as the most upstream molecule in the signaling pathway that responds to the N/C ratio and indicate that Claspin may also respond to an independent timer to trigger the MBT and activation of cell cycle checkpoints.  相似文献   

19.
Mogila V  Xia F  Li WX 《Developmental cell》2006,11(4):575-582
Cell cycle checkpoints are surveillance mechanisms that safeguard genome integrity. While the extrinsic pathways that halt the cell cycle in response to DNA damages have been well documented, the intrinsic pathways that ensure orderly progression of cell cycle events are not well understood. We demonstrate that Drosophila MEK and ERK constitute an essential intrinsic checkpoint pathway that restrains cell cycle progression in the absence of DNA damage and also responds to ionizing radiation to arrest the cell cycle. Embryos lacking MEK exhibit faster and extra division cycles and fail to undergo timely midblastula transition (MBT) or arrest following ionizing radiation. Conversely, constitutively activated MEK causes cell cycle arrest. Further, MEK activation in the early embryo is cell cycle-dependent and Raf independent and increases in response to ionizing radiation or in the absence of Chk1. Thus, MEK/ERK activation is required for multiple checkpoints and is essential for orderly cell cycle progression.  相似文献   

20.
The cleavage cycle, which is initiated by fertilization, consists of only S and M phases, and the gap phases (G1 and G2) appear after the midblastula transition (MBT) in the African clawed frog, Xenopus laevis. During early development in Xenopus, we examined the E2F activity, which controls transition from the G1 to S phase in the somatic cell cycle. Gel retardation and transactivation assays revealed that, although the E2F protein was constantly present throughout early development, the E2F transactivation activity was induced in a stage-specific manner, that is, low before MBT and rapidly increased after MBT. Introduction of the recombinant dominant negative E2F (dnE2F), but not the control, protein into the 2-cell stage embryos specifically suppressed E2F activation after MBT. Cells in dnE2F-injected embryos appeared normal before MBT, but ceased to proliferate and eventually died at the gastrula. These cells contained decreased cdk activity with enhanced inhibitory phosphorylation of Cdc2 at Tyr15. Thus, E2F activity is required for cell cycle progression and cell viability after MBT, but not essential for MBT transition and developmental progression during the cleavage stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号