首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uptake of soil water by plants may result in significant gradients between bulk soil and soil in the vicinity of roots. Few experimental studies of water potential gradients in close proximity to roots, and no studies on the relationship of water potential gradients to the root and leaf water potentials, have been conducted. The occurrence and importance of pre-dawn gradients in the soil and their relation to the pre-dawn root and leaf water potentials were investigated with seedlings of four species. Pre-germinated seeds were grown without watering for 7 and lid in a silt loam soil with initial soil matric potentials of -0.02, -0.1 and -0.22 MPa. Significant gradients, independent of the species, were observed only at pre-dawn soil matric potentials lower than -0.25 MPa; the initial soil matric potentials were -0.1 MPa. At an initial bulk soil matric potential of -0.22 MPa, a steep gradient between bulk and rhizoplane soil was observed after 7 d for maize (Zea mays L. cv. Issa) and sunflower (Helianthus annuus L. cv. Nanus), in contrast to barley (Hordeum vulgare L. cv. Athos) and wheat (Triticum aestivum L. cv. Kolibri). Pre-dawn root water potentials were usually about the same as the bulk soil matric potential and were higher than the rhizoplane soil matric potential. Pre-dawn root and leaf water potentials tended to be much higher than rhizoplane soil matric potentials when the latter were lower than -0.5 MPa. It is concluded that plants tend to become equilibrated overnight with the wetter bulk soil or with wetter zones in the bulk soil. Plants can thus circumvent negative effects of localized steep pre-dawn soil matric potential gradients. This may be of considerable importance for water uptake and growth in drying soil.  相似文献   

2.
The suitability of microtensiometers to measure the spatial variation of soil matric potential and its diurnal change was tested in a pot experiment with pearl millet (Pennisetum americanum [L.] Leeke) in a sandy soil as the soil dried out.The temporal and spatial resolution of this technique allowed precise measurement of soil matric potential and thus estimation of soil water extraction from different compartments as well as from the whole rooting zone. The technique also allowed the measurement of rehydration of plants at night and root water uptake rate per unit soil volume or per unit root length. The precision of determination of root water uptake depended greatly on the accuracy of the estimate of hydraulic conductivity, which was derived from a bare soil and might be different for a cropped soil owing to aggregation induced by the root system. A linear relationship between root length and water uptake was found (r2=0.82), irrespective of variation in soil water content between compartments and despite the variation in root age, xylem differentiation and suberin formation expected to exist between different compartments of the rooting zone. As the experiment was carried out in a range of soil matric potentials between –4 and –30 kPa, drought stress did not occur. Further information at lower soil matric potentials are required, to address questions such as the importance of soil resistance for water uptake, or which portion of the root system has to be stressed to induce hormonal signals to the shoot. The microtensiometer technique can be applied to soil matric potentials up to –80 kPa.  相似文献   

3.
Colonization and survival of Phytophthora cinnamomi in roots was tested in 3 months old, axenically grown seedlings of Eucalyptus maculata (field resistant) and E. sieberi (susceptible). The roots were inoculated, then one week later were excised and buried in three non-sterile, conducive soils; a lateritic gravel, an infertile duplex soil, a loamy sand as well as in a fertile, suppressive krasnozem. Pathogen viability, percentage root colonization and chlamydospore numbers were examined at matric potentials of ?1/3, ?5 and ?10 bar after periods of 10, 100 and 200 days at 21°C. At 10 days, survival was 100% in the form of mycelium and the only significant difference was between the two Eucalyptus species. At 100 days survival was solely due to chlamydospores, but the pathogen was viable in all inoculated roots and at each matric potential. At 200 days soils had dried to less than ?10 bars and the pathogen failed to survive. No significant differences were found between the two pathogen isolates but significant differences were obtained between the susceptible and field resistant Eucalyptus species. Pathogen viability, percentage root colonization and chlamydospore number were highly correlated with soil types and matric potential. These components declined with decreasing soil matric potential. The Krasnozem was only suppressive at relatively high soil matric potentials (?1/3 bar). At lower values (?5, ?10 bar) survival of the pathogen, chlamydospore numbers and percentage colonization of the roots in the Krasnozem were comparable with that of the 3 conducive soils tested. Chlamydospores were present, but in low numbers in roots buried in the suppressive soil at ?1/3 bar.  相似文献   

4.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

5.
We describe here an integration of hydraulic and chemical signals which control stomatal conductance of plants in drying soil, and suggest that such a system is more likely than control based on chemical signals or water relations alone. The determination of xylem [ABA] and the stomatal response to xylem [ABA] are likely to involve the water flux through the plant. (1) If, as seems likely, the production of a chemical message depends on the root water status (Ψr), it will not depend solely on the soil water potential (Ψs) but also on the flux of water through the soil-plant-atmosphere continuum, to which are linked the difference between Ψr and Ψs. (2) The water flux will also dilute the concentration of the message in the xylem sap. (3) The stomatal sensitivity to the message is increased as leaf water potential falls. Stomatal conductance, which controls the water flux, therefore would be controlled by a water-flux-dependent message, with a water-flux-dependent sensitivity. In such a system, we have to consider a common regulation for stomatal conductance, leaf and root water potentials, water flux and concentration of ABA in the xylem. In order to test this possibility, we have combined equations which describe the generation and effects of chemical signals and classical equations of water flux. When the simulation was run for a variety of conditions, the solution suggested that such common regulation can operate. Simulations suggest that, as well as providing control of stomatal conductance, integration of chemical and hydraulic signalling may also provide a control of leaf water potential and of xylem [ABA], features which are apparent from our experimental data. We conclude that the root message would provide the plant with a means to sense the conditions of water extraction (soil water status and resisance to water flux) on a daily timescale, while the short-term plant response to this message would depend on the evaporative demand.  相似文献   

6.
A portable freezing point meter was used in the field to measure the water potential gradients in sunflower (Helianthus annuus), beans (Phaseolus vulgaris), corn (Zea mays), wheat (Triticum aestivum), pumpkin (Cucurbita pepo), potato (Solanum tuberosum), alfalfa (Medicago sativa), and sugarbeets (Beta vulgaris). The measurements were made between daybreak and sunrise, and again during the middle of the afternoon on days when the potential evapotranspiration varied between 6.5 and 8.0 mm of water. The gradients varied from a maximum of 0.2 bar per cm in a wheat, down to an undetectable value for pumpkin. Although most of the soil in the root zone was kept at potentials above –1 bar, the bulk of the root tissue had water potentials of –5 to –10 bars. Differences in water potential between shaded and unshaded leaves, and between leaf tissue and guttation fluid suggested a similar drop of several bars between xylem elements and the surrounding leaf tissue in some plant species. The implications of such drops are discussed with respect to plant water transport equations and pressure cell potential measurements.  相似文献   

7.
Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl2 and CaCl2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m?1. After 100 days, total water (Ψw, plant) and osmotic (Ψo, plant) potentials at predawn and midday and Ψo, soil, matric potential (Ψm, soil) and Ψw, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψo component was the largest contributor to Ψw, soil. Atriplex is surviving ECs close to 40 dS m?1 due to the decrease in the Ψw. The plants reached a Ψw of approximately ?8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.  相似文献   

8.
The water relations of pepper plants (Capsicum frutescens L.) under conditions conducive to guttation were studied to evaluate the control of plant water stress with polyethylene glycols. The addition of polyethylene glycol 6000 to the nutrient solution resulted in water relations similar to those expected in soil at the same water potentials. Specifically, xylem pressure potential in the root and leaf became more negative during a 24-hour treatment period, while osmotic potential of the root xylem sap remained constant. The decrease in pressure potential was closely correlated with the decrease in osmotic potential of the nutrient solution. In contrast, the addition of polyethylene glycol 400 to the nutrient medium resulted in a reduction of osmotic potential in the root xylem sap; this osmotic adjustment in the xylem was large enough to establish an osmotic gradient for entry of water and cause guttation at a nutrient solution osmotic potential of −4.8 bars. Pressure potential in the root and leaf xylem became negative only at nutrient solution osmotic potentials lower than −4.8 bars. About half of the xylem osmotic adjustment in the presence of polyethylene glycol 400 was caused by increased accumulation of K+, Na+, Ca2+, and Mg2+ in the root xylem. These studies indicate that larger polyethylene glycol molecules such as polyethylene glycol 6000 are more useful for simulating soil water stress than smaller molecules such as polyethylene glycol 400.  相似文献   

9.
An interpretation of some whole plant water transport phenomena   总被引:7,自引:1,他引:6       下载免费PDF全文
A treatment of water flow into and through plants to the evaporating surface of the leaves is presented. The model is driven by evaporation from the cell wall matrix of the leaves. The adsorptive and pressure components of the cell wall matric potential are analyzed and the continuity between the pressure component and the liquid tension in the xylem established. Continuity of these potential components allows linking of a root transport function, driven by the tension in the xylem, to the leaf water potential. The root component of the overall model allows for the solvent-solute interactions characteristic of a membrane-bound system and discussion of the interactions of environmental variables such as root temperature and soil water potentials. A partition function is developed from data in the literature which describes how water absorbed by the plant might be divided between transpiration and leaf growth over a range of leaf water potentials.

Relationships between the overall system conductance and the conductance coefficients of the various plant parts (roots, xylem, leaf matrix) are established and the influence of each of these discussed.

The whole plant flow model coupled to the partition function is used to simulate several possible relationships between leaf water potential and transpiration rate. The effects of changing some of the partition function coefficients, as well as the root medium water potential on these simulations is illustrated.

In addition to the general usefulness of the model and its ability to describe a wide range of situations, we conclude that the relationships used, dealing with bulk fluid flow, diffusion, and solute transport, are adequate to describe the system and that analogically based theoretical systems, such as the Ohm's law analogy, probably ought to be abandoned for this purpose.

  相似文献   

10.
Leaf and root control of stomatal closure during drying in soybean   总被引:2,自引:0,他引:2  
The stomatal conductance of an illuminated 2.5 cm2 area of an intact soybean leaflet was the same whether the rest of the shoot was in light or darkness. This was true throughout soil drying cycles. Water potential of tissue immediately outside the illuminated area consistently decreased about 0.3 MPa upon illumination of the shoot. This erroneously suggested that stomatal conductance during soil drying did not respond to diurnal reductions in leaf water potential, but was controlled by root or soil water status. Tests showed that the water potential of tissue in the illuminated area did not change in the steady-state upon illumination of the rest of the shoot. Water potentials of shaded sections of leaves were not different from predawn water potentials, and were higher than leaf xylem pressure potentials as determined with a pressure chamber. These steep local gradients of leaf water potential suggest that there is minimal interchange of water among xylem elements leading from roots to different sections of leaves. The relationship between stomatal conductance and leaf water potential was the same whether leaf water potential was reduced by soil drying, application of polyethylene glycol (PEG) to the root system, lowering root temperature, or leaf excision. In the root cooling experiment, there was no soil drying, and with leaf excision, there was no root drying. The similarity of stomatal responses to leaf water potential in all cases strongly suggests control of conductance by a signal produced by local leaf water potential rather than root or soil water status in these experiments.  相似文献   

11.
The growth and development of soybeans (Glycine max L. cv. Amsoy) was studied at soil matric potentials of ?0.1 to ?1.0 bars. Chlorophyll, photosynthesis, and leaf nitrogen per plant was greatest at ?4 bars leaf water potential. Leaf area, number of internodes, plant height and dry weight of vegetative parts declined as leaf water potential decreased from ?2 to ?19 bars. Nitrogen content and nitrate reductase activity per g fresh weight determined the percentage protein of individual seeds but nitrogen content and nitrate reductase activity per plant determined the amount of total seed protein. The protein synthesized in the seed changed little in amino acid composition with changes in leaf water potential. Leaf water potentials above or below ?4 bars decreased yield, total protein and total lipid but plants produced the largest percentage of individual seed protein at ?19 bars leaf water potential.  相似文献   

12.
A model of maize stomatal behaviour has been developed, in which stomatal conductance is linked to the concentration of abscisic acid ([ABA]) in the xylem sap, with a sensitivity dependent upon the leaf water potential (Ψ1). It was tested against two alternative hypotheses, namely that stomatal sensitivity to xylem [ABA] would be linked to the leaf-to-air vapour pressure difference (VPD), or to the flux of ABA into the leaf. Stomatal conductance (gs) was studied: (1) in field-grown plants whose xylem [ABA] and Ψ1 depended on soil water status and evaporative demand; (2) in field-grown plants fed with ABA solutions such that xylem [ABA] was artificially raised, thereby decreasing gs and increasing Ψ1 and leaf-to-air VPD; and (3) in ABA-fed detached leaves exposed to varying evaporative demands, but with a constant and high Ψ1. The same relationships between gs, xylem [ABA] and Ψ1, showing lower stomatal sensitivity to [ABA] at high Ψ1, applied whether variations in xylem [ABA] were due to natural increase or to feeding, and whether variations in Ψ1, were due to changes in evaporative demand or to the increased Ψ1 observed in ABA-fed plants. Conversely, neither the leaf-to-air VPD nor the ABA flux into the leaf accounted for the observed changes in stomatal sensitivity to xylem [ABA]. The model, using parameters calculated from previous field data and the detached-leaf data, was tested against the observations of both ABA-fed and droughted plants in the field. It accounted with reasonable accuracy for changes in gs (r2 ranging from 0.77 to 0.81). These results support the view that modelling of stomatal behaviour requires consideration of both chemical and hydraulic aspects of root-to-shoot communication.  相似文献   

13.
Diurnal depression of leaf hydraulic conductance in a tropical tree species   总被引:10,自引:2,他引:8  
Diurnal patterns of hydraulic conductance of the leaf lamina (Kleaf) were monitored in a field‐grown tropical tree species in an attempt to ascertain whether the dynamics of stomatal conductance (gs) and CO2 uptake (Aleaf) were associated with short‐term changes in Kleaf. On days of high evaporative demand mid‐day depression of Kleaf to between 40 and 50% of pre‐dawn values was followed by a rapid recovery after 1500 h. Leaf water potential during the recovery stage was less than ?1 MPa implying a refilling mechanism, or that loss of Kleaf was not linked to cavitation. Laboratory measurement of the response of Kleaf to Ψleaf confirmed that leaves in the field were operating at water potentials within the depressed region of the leaf ‘vulnerability curve’. Diurnal courses of Kleaf and Ψleaf predicted from measured transpiration, xylem water potential and the Kleaf vulnerability function, yielded good agreement with observed trends in both leaf parameters. Close correlation between depression of Kleaf, gs and Aleaf suggests that xylem dysfunction in the leaf may lead to mid‐day depression of gas exchange in this species.  相似文献   

14.
The possible role of water expelled from cavitated xylem conduits in the rehydration of water-stressed leaves has been studied in one-year-old twigs of populus deltoides Bartr. Twigs were dehydrated in air. At desired values of leaf water potential (Ψl) (between near full turgor and -1.62 MPa), twigs were placed in black plastic bags for 1–2h. Leaf water content was measured every 3–5 min before bagging and every 10 min in the dark. Hydraulic conductivity and xylem cavitation were measured both in the open and in the dark. Cavitation was monitored as ultrasound acoustic emissions (AE). A critical Ψl value of -0.96 MPa was found, at which AE increased significantly while the leaf water deficit decreased by gain of water. Since the twigs were no longer attached to roots, it was concluded that water expelled from cavitated xylem conduits was transported to the leaves, thus contributing to their rehydration. Xylem cavitation is discussed in terms of a ‘leaf water deficit buffer mechanism’, under not very severe water stress conditions.  相似文献   

15.
The hypothesis that mycorrhizal colonization improves the soil–root conductance in plants was experimentally tested in a growth chamber using pot cultures of Agrostis stolonifera L. colonized by Glomus intraradices. Plants were grown in 50-l pots filled with autoclaved sand/silt soil (1:1), with and without the mycorrhizal fungus. Within the mycorrhizal treatment, half of the pots remained well watered, while the other half was subjected to a progressive water deficit. Soil water potential (estimated as plant water potential measured at the end of the dark period), xylem water potential measured at the tiller base, transpiration rate, and soil water content were monitored throughout the experiment. Soil–root hydraulic conductance was estimated as the ratio between the instantaneous transpiration rate and the soil and xylem water potential difference. To obtain cultures with similar nutritional status, the P in the modified Hoagland’s nutrient solution was withheld from the inoculated pots and applied only once a month. Even though there were no differences on growth or nutrient status for the mycorrhizal treatments, water transport was enhanced by the inoculum presence. Transpiration rate was maintained at lower xylem water potential values in the presence of mycorrhizae. The analysis of the relationship between soil–root hydraulic resistance and soil water content showed that mycorrhizal colonization increased soil–root hydraulic conductance as the soil dried. For these growing conditions, this effect was ascribed to the range of 6–10%.  相似文献   

16.
A field study was conducted to determine how atmospheric and edaphic conditions influenced the water relations of avocado trees (Persea americana Mill. cv. Bacon). With high and low levels of incident photosynthetically active radiation (PAR, 400–700 nm wave length), and either wet or dry soil, leaf conductance decreased as the absolute humidity difference from leaf to air increased. For any water stress treatment, conductance was higher at high PAR than at low PAR. Both conductance and transpiration were higher in well-watered trees than in stressed trees, and in prestressed trees levels were intermediate to unstressed and stressed trees. A model for water flux through the soil-plant-atmosphere continuum was used to examine the relationship of leaf xylem pressure potential to transpiration in well-watered trees and in trees stressed by dry soil. There was a close linkage between leaf xylem pressure potential and transpiration in unstressed and previously stressed trees with high or low PAR, i.e. similar potentials occurred with equivalent transpiration regardless of previous treatment or time of day. In stressed trees, xylem pressure potential was lower than in unstressed trees both during the day and night, and at a given transpiration rate the potential was lower after 1400 h than before that time. The model indicated that in stressed trees xylem pressure potential was uncoupled from transpiration, presumably because of altered resistance in the soil-root portion of the transport system.  相似文献   

17.
Diurnal rates of leaf elongation vary in maize (Zea mays L.) and are characterized by a decline each afternoon. The cause of the afternoon decline was investigated. When the atmospheric environment was held constant in a controlled environment, and water and nutrients were adequately supplied to the soil or the roots in solution, the decline persisted and indicated that the cause was internal. Inside the plants, xylem fluxes of water and solutes were essentially constant during the day. However, the forces moving these components changed. Tensions rose in the xylem, and gradients of growth-induced water potentials decreased in the surrounding growing tissues of the leaf. These potentials, measured with isopiestic thermocouple psychrometry, changed because the roots became less conductive to water as the day progressed. The increased tensions were reversed by applying pressure to the soil/root system, which rehydrated the leaf. Afternoon elongation immediately recovered to rapid morning rates. The rapid morning rates did not respond to soil/root pressurization. It was concluded that increased xylem tension in the afternoon diminished the gradients in growth-induced water potential and thus inhibited elongation. Because increased tensions cause a similar but larger inhibition of elongation if maize dehydrates, these hydraulics are crucial for shaping the growth-induced water potential and thus the rates of leaf elongation in maize over the entire spectrum of water availability.  相似文献   

18.
Cook PG  O'Grady AP 《Oecologia》2006,150(1):97-107
A simple model of water uptake by vegetation is used to aid the discrimination of plant water sources determined with isotope data. In the model, water extracted from different soil depths depends on the leaf–soil potential difference, a root distribution function and a lumped hydraulic conductance parameter. Measurements of plant transpiration rate, and soil and leaf water potentials are used to estimate the value of the conductance parameter. Isotopic ratios in soil water and xylem are then used to constrain the root distribution. The model is applied to field measurements of transpiration, leaf water potential and 18O composition of xylem water on Corymbia clarksoniana, Lophostemon suaveolens, Eucalpytus platyphylla and Melaleuca viridiflora, and soil water potential and 18O composition of soil water to 8.5 m depth, in an open woodland community, Pioneer Valley, North Queensland. Estimates of the water uptake from various depths below the surface are determined for each species. At the time of sampling, the proportion of groundwater extracted by the trees ranged from 100% for C. clarksoniana to <15% for L. suaveolens and E. platyphylla. The advantages of the model over the traditional approach to determining sources of water used by plants using isotope methods are that it: (1) permits more quantitative assessments of the proportion of water sourced from different depths, (2) can deal with gradational soil water isotope profiles (rather than requiring distinct values for end-members), and (3) incorporates additional data on plant water potentials and is based on simple plant physiological processes.  相似文献   

19.
In experiments with potted plants, the relationships between soil matric potential, plant water potential and production of water droplets (leaf surface wetness) on the folded central whorl leaf of seedlings of sorghum genotypes that are either resistant or susceptible to shoot fly (Atherigona soccata) damage were investigated. Differences in soil matric potentials in the pots affected the plant water status, which in turn had profound effects on the production of water droplets on the central whorl leaf of the sorghum genotype susceptible to shoot fly. There was no consistent variation in the relationship between plant water potential and soil matric potential of resistant and susceptible sorghum genotypes. However, there was very little or practically no water droplets on the central whorl leaf of the resistant genotypes, indicating that the production of water droplets is not solely the result of internal water status of the plant. It is suggested that leaf surface wetness is genetically controlled and that an understanding of the mechanism by which water is transferred to the leaf surface will enhance breeding for resistance to shoot fly.  相似文献   

20.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号