首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of legumes to inoculation with rhizobia can be affected by many factors. Little work has been undertaken to examine how indigenous populations or rhizobia affect this response. We conducted a series of inoculation trials in four Hawaiian soils with six legume species (Glycine max, Vigna unguiculata, Phaseolus lunatus, Leucaena leucocephala, Arachis hypogaea, and Phaseolus vulgaris) and characterized the native rhizobial populations for each species in terms of the number and effectiveness of the population for a particular host. Inoculated plants had, on average, 76% of the nodules formed by the inoculum strain, which effectively eliminated competition from native strains as a variable between soils. Rhizobia populations ranged from less than 6 × 100/g of soil to 1 × 104/g of soil. The concentration of nitrogen in shoots of inoculated plants was not higher than that in uninoculated controls when the most probable number MPN counts of rhizobia were at or above 2 × 101/g of soil unless the native population was completely ineffective. Tests of random isolates from nodules of uninoculated plants revealed that within most soil populations there was a wide range of effectiveness for N2 fixation. All populations had isolates that were ineffective in fixing N2. The inoculum strains generally did not fix more N2 than the average isolate from the soil population in single-isolate tests. Even when the inoculum strain proved to be a better symbiont than the soil rhizobia, there was no response to inoculation. Enhanced N2 fixation after inoculation was related to increased nodule dry weights. Although inoculation generally increased nodule number when there were less than 1 × 102 rhizobia per g of soil, there was no corresponding increase in nodule dry weight when native populations were effective. Most species compensated for reduced nodulation in soils with few rhizobia by increasing the size of nodules and therefore maintaining a nodule dry weight similar to that of inoculated plants with more nodules. Even when competition by native soil strains was overcome with a selected inoculum strain, it was not always possible to enhance N2 fixation when soil populations were above a threshold number and had some effective strains.  相似文献   

2.
Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a few other rhizobia that include the poorly characterized isolates related to Rhizobium sp. strain Or191. Distinctive features of the symbiosis between alfalfa and S. meliloti are the marked specificity from the plant to the bacteria and the strict requirement for the presence of sulfated lipochitooligosaccharides (Nod factors [NFs]) at its reducing end. Here, we present evidence of the presence of a functional nodH-encoded NF sulfotransferase in the Or191-like rhizobia. The nodH gene, present in single copy, maps to a high molecular weight megaplasmid. As in S. meliloti, a nodF homolog was identified immediately upstream of nodH that was transcribed in the opposite direction (local synteny). This novel nodH ortholog was cloned and shown to restore both NF sulfation and the Nif+Fix+ phenotypes when introduced into an S. meliloti nodH mutant. Unexpectedly, however, nodH disruption in the Or191-like bacteria did not abolish their ability to nodulate alfalfa, resulting instead in a severely delayed nodulation. In agreement with evidence from other authors, the nodH sequence analysis strongly supports the idea that the Or191-like rhizobia most likely represent a genetic mosaic resulting from the horizontal transfer of symbiotic genes from a sinorhizobial megaplasmid to a not yet clearly identified ancestor.  相似文献   

3.
4.
This study was initiated to characterize Rhizobium isolates obtained from root nodules of ineffectively nodulated, field-grown alfalfa (Medicago sativa L.) plants. The purpose was to determine if these isolates possessed characteristics which would explain either their ineffectiveness in N2 fixation or their apparent ability to tolerate the moderately acid soil conditions from which they originated. Isolates were characterized by analysis of growth rate, 39°C tolerance, acid production on conventional media, and symbiotic performance. All isolates were ineffective in N2 fixation on alfalfa, and they contained one or more anomalous characteristics. These included either slow growth rate, lack of 39°C tolerance, or lack of acid production on conventional media. Infectiveness tests on a broad range of legumes revealed that the isolates formed root nodules on M. sativa, Medicago lupulina L., and Phaseolus vulgaris (L.) Savi. (common bean). These results provide evidence that, in some situations, ineffective nodulation of M. sativa in the field may be due to the presence of promiscuous, native Rhizobium species.  相似文献   

5.
This study was initiated to characterize Rhizobium isolates obtained from root nodules of ineffectively nodulated, field-grown alfalfa (Medicago sativa L.) plants. The purpose was to determine if these isolates possessed characteristics which would explain either their ineffectiveness in N(2) fixation or their apparent ability to tolerate the moderately acid soil conditions from which they originated. Isolates were characterized by analysis of growth rate, 39 degrees C tolerance, acid production on conventional media, and symbiotic performance. All isolates were ineffective in N(2) fixation on alfalfa, and they contained one or more anomalous characteristics. These included either slow growth rate, lack of 39 degrees C tolerance, or lack of acid production on conventional media. Infectiveness tests on a broad range of legumes revealed that the isolates formed root nodules on M. sativa, Medicago lupulina L., and Phaseolus vulgaris (L.) Savi. (common bean). These results provide evidence that, in some situations, ineffective nodulation of M. sativa in the field may be due to the presence of promiscuous, native Rhizobium species.  相似文献   

6.
A. A. Holland 《Plant and Soil》1970,32(1-3):293-302
Summary Native rhizobia associated withTrifolium albopurpureum, T. bifidum, T. ciliolatum, T. depauperatum, T. dichotomum, T. flavulum, T. melanthum, T. microcephalum, T. microdon, T. oliganthum andT. tridentatum were found in Northern California range soils. These rhizobia nodulate subterranean clover but are ineffective in nitrogen fixation with this host. Native rhizobia compet with those in commercial inoculants to form nodules. To ensure effective nodulation by nitrogen fixing rhizobia, commercial inoculants should be applied at rates greater than those recommended by the manufacturerse Effective nodulation was achieved by an application of 7.5×104 rhizobia per seed, four times the recommended rate.  相似文献   

7.
Cytokinin is required for the initiation of leguminous nitrogen fixation nodules elicited by rhizobia and the delay of the leaf senescence induced by drought stress. A few free-living rhizobia have been found to produce cytokinin. However, the effects of engineered rhizobia capable of synthesizing cytokinin on host tolerance to abiotic stresses have not yet been described. In this study, two engineered Sinorhizobium strains overproducing cytokinin were constructed. The tolerance of inoculated alfalfa plants to severe drought stress was assessed. The engineered strains, which expressed the Agrobacterium ipt gene under the control of different promoters, synthesized more zeatins than the control strain under free-living conditions, but their own growth was not affected. After a 4-week inoculation period, the effects of engineered strains on alfalfa growth and nitrogen fixation were similar to those of the control strain under nondrought conditions. After being subjected to severe drought stress, most of the alfalfa plants inoculated with engineered strains survived, and the nitrogenase activity in their root nodules showed no apparent change. A small elevation in zeatin concentration was observed in the leaves of these plants. The expression of antioxidant enzymes increased, and the level of reactive oxygen species decreased correspondingly. Although the ipt gene was transcribed in the bacteroids of engineered strains, the level of cytokinin in alfalfa nodules was identical to that of the control. These findings suggest that engineered Sinorhizobium strains synthesizing more cytokinin could improve the tolerance of alfalfa to severe drought stress without affecting alfalfa nodulation or nitrogen fixation.  相似文献   

8.
A study was conducted with the aim of evaluating the genetic diversity of alfalfa rhizobia isolated from volcanic soils in southern Chile and their ability to establish an effective symbiosis with alfalfa. Rhizobial strains isolated from nodules were identified and selected based on PCR analyses and acid tolerance. Symbiotic effectiveness (nodulation and shoot dry weight) of acid-tolerant rhizobia was evaluated in glasshouse experiments under acidic conditions. The results revealed that Sinorhizobium meliloti is the dominant species in alfalfa nodules with a high genetic diversity at strain level grouped in three major clusters. There was a close relationship (r 2 = 0.895, P ≤ 0.001, n = 40) between soil pH and the size of rhizobial populations. Representative isolates from major cluster groups showed wide variation in acid tolerance expressed on buffered agar plates (pH 4.5–7.0) and symbiotic effectiveness with alfalfa. One isolate (NS11) appears to be suitable as an inoculant for alfalfa according to its acid tolerance and symbiotic effectiveness at low pH (5.5). The isolation and selection of naturalized S. meliloti strains with high symbiotic effectiveness under acidic conditions is an alternative approach to improving the productivity of alfalfa and for reducing the application of synthetic fertilizers in Chile.  相似文献   

9.
This work aimed to evaluate the symbiotic compatibility and nodulation efficiency of rhizobia isolated from Desmodium incanum, Lotus corniculatus, L. subbiflorus, L. uliginosus and L. glaber plants by cross-inoculation. Twelve reference strains and 21 native isolates of rhizobia were genetically analyzed by the BOX-PCR technique, which showed a high genetic diversity among the rhizobia studied. The isolates were also characterized based on their production of indolic compounds and siderophores, as well as on their tolerance to salinity. Fifteen of the 33 rhizobia analyzed were able to produce indolic compounds, whereas 13 produced siderophores. All the tested rhizobia were sensitive to high salinity, although some were able to grow in solutions of up to 2% NaCl. Most of the native rhizobia isolated from L. uliginosus were able to induce nodulation in all plant species studied. In a greenhouse experiment using both D. incanum and L. corniculatus plants, the rhizobia isolate UFRGS Lu2 promoted the greatest plant growth. The results demonstrate that there are native rhizobia in the soils of southern Brazil that have low host specificity and are able to induce nodulation and form active nodules in several plant species.  相似文献   

10.
Drought is an important environmental factor that can affect rhizobial competition and N2 fixation. Three alfalfa (Medicago sativa L. and M. falcata L.) accessions were grown in pots containing soil from an irrigated (Soil 1) and a dryland (Soil 2) alfalfa field in northern Utah, USA. Mutants of three strains of Rhizobium meliloti Dang. from Pakistan (UL 136, UL 210, and UL 222) and a commercial rhizobial strain 102F51a were developed with various levels of resistance to streptomycin. Seeds inoculated with these individual streptomycin-resistant mutants were sown in the two soils containing naturalized rhizobial populations. Soils in the pots were maintained at −0.03, −0.5, and −1.0 MPa. After 10 weeks, plants were harvested and nodule isolates were cultured on agar medium with and without streptomycin to determine nodule occupancy (proportion of the nodules occupied by introduced rhizobial strains). Number of nodules, nodule occupancy, total plant dry weight, and shoot N were higher for Soil 1 than Soil 2. Number of nodules, plant dry weight, and shoot N decreased as drought increased from −0.03 to −1.0 MPa in the three alfalfa accessions. Rhizobial strains UL 136 and UL 222 were competitive with naturalized alfalfa rhizobia and were effective at symbiotic N2 fixation under drought. These results suggest that nodulation, growth, and N2 fixation in alfalfa can be improved by inoculation with competitive and drought-tolerant rhizobia and may be one economically feasible way to increase alfalfa production in water-limited environments. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931.  相似文献   

11.
In vivo CO2 fixation activity and in vitro phosphoenolpyruvate carboxylase activity were demonstrated in effective and ineffective nodules of alfalfa (Medicago sativa L.) and in the nodules of four other legume species. Phosphoenolpyruvate carboxylase activity was greatly reduced in nodules from both host and bacterially conditioned ineffective alfalfa nodules as compared to effective alfalfa nodules.

Forage harvest and nitrate application reduced both in vivo and in vitro CO2 fixation activity. By day 11, forage harvest resulted in a 42% decline in in vitro nodule phosphoenolpyruvate carboxylase activity while treatment with either 40 or 80 kilograms nitrogen per hectare reduced activity by 65%. In vitro specific activity of phosphoenolpyruvate carboxylase and glutamate synthase were positively correlated with each other and both were positively correlated with acetylene reduction activity.

The distribution of radioactivity in the nodules of control plants (unharvested, 0 kilograms nitrogen per hectare) averaged 73% into the organic acid and 27% into the amino acid fraction. In nodules from harvested plants treated with nitrate, near equal distribution of radioactivity was observed in the organic acid (52%) and amino acid (48%) fractions by day 8. Recovery to control distribution occurred only in those nodules whose in vitro phosphoenolpyruvate carboxylase activity recovered.

The results demonstrate that CO2 fixation is correlated with nitrogen fixation in alfalfa nodules. The maximum rate of CO2 fixation for attached and detached alfalfa nodules at low CO2 concentrations (0.13-0.38% CO2) were 18.3 and 4.9 nanomoles per hour per milligram dry weight, respectively. Nodule CO2 fixation was estimated to provide 25% of the carbon required for assimilation of symbiotically fixed nitrogen in alfalfa.

  相似文献   

12.
The molecular and physiological mechanisms behind the maturation and maintenance of N2-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N2-fixing nodules not only on the roots but also on the stems. In this study, 10,080 transposon-inserted mutants of A. caulinodans ORS571 were individually inoculated onto the stems of S. rostrata, and those mutants that induced ineffective stem nodules, as displayed by halted development at various stages, were selected. From repeated observations on stem nodulation, 108 Tn5 mutants were selected and categorized into seven nodulation types based on size and N2 fixation activity. Tn5 insertions of some mutants were found in the well-known nodulation, nitrogen fixation, and symbiosis-related genes, such as nod, nif, and fix, respectively, lipopolysaccharide synthesis-related genes, C4 metabolism-related genes, and so on. However, other genes have not been reported to have roles in legume-rhizobium symbiosis. The list of newly identified symbiosis-related genes will present clues to aid in understanding the maturation and maintenance mechanisms of nodules.  相似文献   

13.
The addition of streptomycin to nonsterile soil suppressed the numbers of bacterial cells in the rhizosphere of alfalfa (Medicago sativa L.) for several days, resulted in the enhanced growth of a streptomycin-resistant strain of Rhizobium meliloti, and increased the numbers of nodules on the alfalfa roots. A bacterial mixture inoculated into sterile soil inhibited the colonization of alfalfa roots by R. meliloti, caused a diminution in the number of nodules, and reduced plant growth. Enterobacter aerogenes, Pseudomonas marginalis, Acinetobacter sp., and Klebsiella pneumoniae suppressed the colonization by R. meliloti of roots grown on agar and reduced nodulation by R. meliloti, the suppression of nodulation being statistically significant for the first three species. Bradyrhizobium sp. and “Sarcina lutea” did not suppress root colonization nor nodulation by R. meliloti. The doubling times in the rhizosphere for E. aerogenes, P. marginalis, Acinetobacter sp., and K. pneumoniae were less and the doubling times for Bradyrhizobium sp. and “S. lutea” were greater than the doubling time of R. meliloti. Under the same conditions, Arthrobacter citreus injured alfalfa roots. We suggest that competition by soil bacteria reduces nodulation by rhizobia in soil and that the extent of inhibition is related to the growth rates of the rhizosphere bacteria.  相似文献   

14.
Rhizobia were isolated from two Kenyan soils with pHs of 4.5 and 6.8 and characterized on the basis of their host ranges for nodulation and nitrogen fixation, colony morphologies, restriction fragment fingerprints, and hybridization with a nifH probe. The populations of rhizobia nodulating Phaseolus vulgaris in the two soils were similar in numbers and in effectiveness of N(inf2) fixation but were markedly different in composition. The population in the Naivasha soil (pH 6.8) was dominated by isolates specific in host range for nodulation to P. vulgaris; these all had multiple copies, in most cases four, of the structural nitrogenase gene nifH. Only one of the isolates from this soil formed effective nodules on Leucaena leucocephala, and this isolate had only a single copy of nifH. By contrast, the population in the acid Daka-ini soil (pH 4.5) was composed largely of broad-host-range isolates which had single copies of nifH. The isolates from the Daka-ini soil which were specific to P. vulgaris generally had three copies of nifH, although one isolate had only two copies. These rhizobial isolates are indigenous to Kenyan soils and yet have marked similarities to previously described Rhizobium species from other continents.  相似文献   

15.
Flavodoxins are electron carrier flavoproteins that are involved in the response to oxidative stress in bacteria and cyanobacteria. Recently, we obtained Sinorhizobium meliloti bacteria that overexpressed a flavodoxin from the cyanobacterium Anabaena variabilis [Redondo et al. (2009) Plant Physiology 149:1166–1178]. In the present work, tolerance to cadmium was evaluated in free-living transformed S. meliloti and in alfalfa plants nodulated by the flavodoxin-overexpressing rhizobia, in comparison with plants nodulated by wild-type bacteria. Overexpression of flavodoxin protected free-living S. meliloti from cadmium toxicity and had a positive effect on nitrogen fixation of alfalfa plants subjected to cadmium stress. Flavodoxin notably reduced cadmium-induced structural and ultrastructural alterations in alfalfa nodules. Putative protection mechanisms in flavodoxin-overexpressing nodules are discussed. Flavodoxin could have applications as a biotechnological tool to improve the symbiotic performance of alfalfa and other legumes in cadmium polluted soils.  相似文献   

16.
In search of effective nitrogen-fixing strains for inoculating Leucaena leucocephala, we assessed the symbiotic efficiency of 41 rhizobial isolates from root nodules of L. leucocephala growing in the arid–hot river valley area in Panxi, China. The genetic diversity of the isolates was studied by analyzing the housekeeping genes 16S rRNA and recA, and the symbiotic genes nifH and nodC. In the nodulation and symbiotic efficiency assay, only 11 of the 41 isolates promoted the growth of L. leucocephala while the majority of the isolates were ineffective in symbiotic nitrogen fixation. Furthermore, one fourth of the isolates had a growth slowing effect on the host. According to the 16S rRNA and recA gene analyses, most of the isolates were Ensifer spp. The remaining isolates were assigned to Rhizobium, Mesorhizobium and Bradyrhizobium. The sequence analyses indicated that the L. leucocephala rhizobia had undergone gene recombination. In contrast to the promiscuity observed as a wide species distribution of the isolates, the results implied that L. leucocephala is preferentially nodulated by strains that share common symbiosis genes. The symbiotic efficiency was not connected to chromosomal background of the symbionts and isolates carrying a similar nifH or nodC showed totally different nitrogen fixation efficiency.  相似文献   

17.
Legume plants, in association with rhizobia, are gaining increasing interest for heavy metal rhizoremediation. This symbiotic interaction combines the advantages of rhizoremediation and soil nitrogen enrichment. In metal polluted soils, Ochrobactrum cytisi can elicit non‐fixing nodules on legumes, including Medicago sativa. Nodulation kinetics was much slower when M. sativa plants were inoculated with O. cytisi Azn6.2 compared with the natural symbiont Ensifer meliloti 1021 and nodules were ineffective in nitrogen fixation. A competition experiment was performed using alfalfa grown on heavy metals, and co‐inoculated with equal amounts of the metal‐sensitive E. meliloti 1021 and the metal‐resistant O. cytisi Azn6.2. When plants were inoculated in non‐polluted substrates, all nodules were formed by E. meliloti 1021. Nevertheless, under increasing metal concentrations, the number of nodules occupied by O. cytisi grew. At the highest metal concentration, all nodules were elicited by O. cytisi, suggesting that the resistant species can take the place of the natural symbiont. This fact has important ecological and environmental implications when proposing legume–rhizobia symbioses for rhizoremediation and highlights the need of selecting highly resistant rhizobia in order to be competitive in polluted soils.  相似文献   

18.
Variation in nodulation preferences for Rhizobium strains within and between Medicago sativa cultivars was assessed in the greenhouse with plants grown in Leonard jars and two soils of diverse origin (Lanark and Ottawa), using inocula consisting of effective individual or paired strains of R. meliloti which could be recognized by high-concentration antibiotic resistance. The results indicated considerable variability in host preferences for R. meliloti among plants within cultivars but not between cultivars. The implications of this variation are discussed from the point of view of possible improvement of symbiotic nitrogen fixation. With one exception, the differences in nodulation success between inoculant R. meliloti strains were consistent in Leonard jars and both soils. All introduced strains formed significantly more nodules in Renfrew soil containing few native rhizobia than in Ottawa soil with a large resident R. meliloti population. Plants grown in Lanark soil without inoculation were ineffectively nodulated by native rhizobia and yielded significantly less growth than those receiving inoculation. In contrast, the yield of inoculated plants in Ottawa soil did not significantly differ from those without inoculation due to effective nodulation by native R. meliloti. The data indicated synergistic effects on yield by certain paired strain inocula relative to the same strains inoculated individually in Lanark but not in Ottawa soil or Leonard jars.  相似文献   

19.
The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates'' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号