首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Khoronenkova SV  Dianov GL 《FEBS letters》2011,585(18):2831-2835
The ARF (Alternative Reading Frame) protein is encoded in the Ink4a locus of human chromosome 9 that is frequently mutated in cancer cells. It was recently demonstrated that ARF is induced in response to DNA damage and inhibits, by direct interaction, the E3 ubiquitin ligase Mule that regulates p53 protein levels. Mule inhibition leads to p53 accumulation and activates cellular DNA damage responses. Mule has also recently been identified as a major E3 ubiquitin ligase involved in the regulation of DNA base excision repair. In this review, we will summarise the major properties of Mule and ARF and their roles in the coordination of DNA repair and DNA replication.  相似文献   

2.
USP7 is involved in the cellular stress response by regulating Mdm2 and p53 protein levels following severe DNA damage. In addition to this, USP7 may also play a role in chromatin remodelling by direct deubiquitylation of histones, as well as indirectly by regulating the cellular levels of E3 ubiquitin ligases involved in histone ubiquitylation. Here, we provide new evidence that USP7 modulated chromatin remodelling is important for base excision repair of oxidative lesions. We show that transient USP7 siRNA knockdown did not change the levels or activity of base excision repair enzymes, but significantly reduced chromatin DNA accessibility and consequently the rate of repair of oxidative lesions.  相似文献   

3.
The deubiquitylation enzyme USP7/HAUSP plays a major role in regulating genome stability and cancer prevention by controlling the key proteins involved in the DNA damage response. Despite this important role in controlling other proteins, USP7 itself has not been recognized as a target for regulation. Here, we report that USP7 regulation plays a central role in DNA damage signal transmission. We find that stabilization of Mdm2, and correspondingly p53 downregulation in unstressed cells, is accomplished by a specific isoform of USP7 (USP7S), which is phosphorylated at serine 18 by the protein kinase CK2. Phosphorylation stabilizes USP7S and thus contributes to Mdm2 stabilization and downregulation of p53. After ionizing radiation, dephosphorylation of USP7S by the ATM-dependent protein phosphatase PPM1G leads to USP7S downregulation, followed by Mdm2 downregulation and accumulation of p53. Our findings provide a quantitative transmission mechanism of the DNA damage signal to coordinate a p53-dependent DNA damage response.  相似文献   

4.
Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis.  相似文献   

5.
6.
7.
Individuals carrying a germ line mutation of the breast cancer susceptibility gene BRCA2 are predisposed to breast, ovarian, and other types of cancer. The BRCA2 protein has been proposed to function in the repair of DNA double-strand breaks. Using an immunopurification-mass spectrometry approach to identify novel proteins that associate with the BRCA2 gene product, we found that a deubiquitinating enzyme, USP11, formed specific complexes with BRCA2. Moreover, BRCA2 was constitutively ubiquitinated in vivo in the absence of detectable proteasomal degradation. Mitomycin C (MMC) led to decreased BRCA2 protein levels associated with increased ubiquitination, consistent with proteasome-dependent degradation. While BRCA2 could be deubiquitinated by USP11 in transient overexpression assays, a catalytically inactive USP11 mutant had no effect on BRCA2 ubiquitination or protein levels. Antagonism of USP11 function either through expression of this mutant or through RNA interference increased cellular sensitivity to MMC in a BRCA2-dependent manner. All of these results imply that BRCA2 expression levels are regulated by ubiquitination in the cellular response to MMC-induced DNA damage and that USP11 participates in DNA damage repair functions within the BRCA2 pathway independently of BRCA2 deubiquitination.  相似文献   

8.
ΔNp63α, the dominant negative isoform of the p63 family is an essential survival factor in head and neck squamous cell carcinoma. This isoform has been shown to be down regulated in response to several DNA damaging agents, thereby enabling an effective cellular response to genotoxic agents. Here, we identify a key molecular mechanism underlying the regulation of ΔNp63α expression in response to extrinsic stimuli, such as chemotherapeutic agents. We show that ΔNp63α interacts with NF-κΒ in presence of cisplatin. We find that NF-κΒ promotes ubiquitin-mediated proteasomal degradation of ΔNp63α. Chemotherapy-induced stimulation of NF-κΒ leads to degradation of ΔNp63α and augments trans-activation of p53 family-induced genes involved in the cellular response to DNA damage. Conversely, inhibition of NF-κΒ with siRNA-mediated silencing NF-κΒ expression attenuates chemotherapy induced degradation of ΔNp63α . These data demonstrate that NF-κΒ plays an essential role in regulating ΔNp63α in response to extrinsic stimuli. Our findings suggest that the activation of NF-κΒ may be a mechanism by which levels of ΔNp63α are reduced, thereby rendering the cells susceptible to cell death in the face of cellular stress or DNA damage.  相似文献   

9.
10.
Adimoolam S  Ford JM 《DNA Repair》2003,2(9):947-954
  相似文献   

11.
12.
The E3 ubiquitin ligase HUWE1/Mule/ARF-BP1 plays an important role in integrating/coordinating diverse cellular processes such as DNA damage repair and apoptosis. A previous study has shown that HUWE1 is required for the early step of DNA damage-induced apoptosis, by targeting MCL-1 for proteasomal degradation. However, HUWE1 is subsequently inactivated, promoting cell survival and the subsequent DNA damage repair process. The mechanism underlying its regulation during this process remains largely undefined. Here, we show that the Cullin4B-RING E3 ligase (CRL4B) is required for proteasomal degradation of HUWE1 in response to DNA damage. CUL4B is activated in a NEDD8-dependent manner, and ubiquitinates HUWE1 in vitro and in vivo. The depletion of CUL4B stabilizes HUWE1, which in turn accelerates the degradation of MCL-1, leading to increased induction of apoptosis. Accordingly, cells deficient in CUL4B showed increased sensitivity to DNA damage reagents. More importantly, upon CUL4B depletion, these phenotypes can be rescued through simultaneous depletion of HUWE1, consistent with the role of CUL4B in regulating HUWE1. Collectively, these results identify CRL4B as an essential E3 ligase in targeting the proteasomal degradation of HUWE1 in response to DNA damage, and provide a potential strategy for cancer therapy by targeting HUWE1 and the CUL4B E3 ligase.  相似文献   

13.
14.
15.
Zhang X  Berger FG  Yang J  Lu X 《The EMBO journal》2011,30(11):2177-2189
Tumour suppressor p53 levels in the cell are tightly regulated by controlled degradation through ubiquitin ligases including Mdm2, COP1, Pirh2, and ARF-BP1. The ubiquitination process is reversible via deubiquitinating enzymes, such as ubiquitin-specific peptidases (USPs). In this study, we identified ubiquitin-specific peptidase 4 (USP4) as an important regulator of p53. USP4 interacts directly with and deubiquitinates ARF-BP1, leading to the stabilization of ARF-BP1 and subsequent reduction of p53 levels. Usp4 knockout mice are viable and developmentally normal, but showed enhanced apoptosis in thymus and spleen in response to ionizing radiation. Compared with wild-type mouse embryonic fibroblasts (MEFs), Usp4-/- MEFs exhibited retarded growth, premature cellular senescence, resistance to oncogenic transformation, and hyperactive DNA damage checkpoints, consistent with upregulated levels and activity of p53 in the absence of USP4. Finally, we showed that USP4 is overexpressed in several types of human cancer, suggesting that USP4 is a potential oncogene.  相似文献   

16.
Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 with a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 can constitute a mechanistic link between DNA damage and the ribosomal stress pathway, and a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.  相似文献   

17.
Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms   总被引:2,自引:0,他引:2       下载免费PDF全文
The p53 protein maintains genomic integrity through its ability to induce cell cycle arrest or apoptosis in response to various forms of stress. Substantial regulation of p53 activity occurs at the level of protein stability, largely determined by the activity of the Mdm2 protein. Mdm2 targets both p53 and itself for ubiquitylation and subsequent proteasomal degradation by acting as an ubiquitin ligase, a function that needs an intact Mdm2 RING finger. For efficient degradation of p53 nuclear export appears to be required. The Mdmx protein, structurally homologous to Mdm2, does not target p53 for degradation, but even stabilizes both p53 and Mdm2, an activity most likely mediated by heterodimerization of the RING fingers of Mdm2 and Mdmx. Here we show that Mdmx expression leads to accumulation of ubiquitylated, nuclear p53 but does not significantly affect the Mdm2-mediated ubiquitylation of p53. In contrast, Mdmx stabilizes Mdm2 by inhibiting its self-ubiquitylation.  相似文献   

18.
Xeroderma pigmentosum variant (XP-V) cells lack the damage-specific DNA polymerase eta and have normal excision repair but show defective DNA replication after UV irradiation. Previous studies using cells transformed with SV40 or HPV16 (E6/E7) suggested that the S-phase response to UV damage is altered in XP-V cells with non-functional p53. To investigate the role of p53 directly we targeted p53 in normal and XP-V fibroblasts using short hairpin RNA. The shRNA reduced expression of p53, and the downstream cell cycle effector p21, in control and UV irradiated cells. Cells accumulated in late S phase after UV, but after down-regulation of p53 they accumulated earlier in S. Cells in which p53 was inhibited showed ongoing genomic instability at the replication fork. Cells exhibited high levels of UV induced S-phase gammaH2Ax phosphorylation representative of exposed single strand regions of DNA and foci of Mre11/Rad50/Nbs1 representative of double strand breaks. Cells also showed increased variability of genomic copy numbers after long-term inhibition of p53. Inhibition of p53 expression dominated the DNA damage response. Comparison with earlier results indicates that in virally transformed cells cellular targets other than p53 play important roles in the UV DNA damage response.  相似文献   

19.
B cell development involves rapid cellular proliferation, gene rearrangements, selection, and differentiation, and it provides a powerful model to study DNA repair processes in vivo. Analysis of the contribution of the base excision repair pathway in lymphocyte development has been lacking primarily owing to the essential nature of this repair pathway. However, mice deficient for the base excision repair enzyme, apurinic/apyrimidinic endonuclease 2 (APE2) protein develop relatively normally, but they display defects in lymphopoiesis. In this study, we present an extensive analysis of bone marrow hematopoiesis in mice nullizygous for APE2 and find an inhibition of the pro-B to pre-B cell transition. We find that APE2 is not required for V(D)J recombination and that the turnover rate of APE2-deficient progenitor B cells is nearly normal. However, the production rate of pro- and pre-B cells is reduced due to a p53-dependent DNA damage response. FACS-purified progenitors from APE2-deficient mice differentiate normally in response to IL-7 in in vitro stromal cell cocultures, but pro-B cells show defective expansion. Interestingly, APE2-deficient mice show a delay in recovery of B lymphocyte progenitors following bone marrow depletion by 5-fluorouracil, with the pro-B and pre-B cell pools still markedly decreased 2 wk after a single treatment. Our data demonstrate that APE2 has an important role in providing protection from DNA damage during lymphoid development, which is independent from its ubiquitous and essential homolog APE1.  相似文献   

20.
DNA base excision repair (BER) is an essential cellular process required for genome stability, and misregulation of BER is linked to premature aging, increased rate of mutagenesis, and cancer. We have now identified the cytoplasmic ubiquitin-specific protease USP47 as the major enzyme involved in deubiquitylation of the key BER DNA polymerase (Pol β) and demonstrate that USP47 is required for stability of newly synthesized cytoplasmic Pol β that is used as a source for nuclear Pol β involved in DNA repair. We further show that knockdown of USP47 causes an increased level of ubiquitylated Pol β, decreased levels of Pol β, and a subsequent deficiency in BER, leading to accumulation of DNA strand breaks and decreased cell viability in response to DNA damage. Taken together, these data demonstrate an important role for USP47 in regulating DNA repair and maintaining genome integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号