首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A MAPKK-like mitotic kinase, TOPK, implies the formation of mitotic spindles and spindle midzone and accomplishing cytokinesis, however, its underlying mechanism remains unclear. A microtubule bundling protein, PRC1, plays a pivotal role in the formation of mitotic spindles and spindle midzone. Because of their functional resemblance, we attempted to clarify the links between these two molecules. TOPK supported mitotic advance via the cdk1/cyclin B1-dependent phosphorylation of PRC1. TOPK induced the phosphorylation of PRC1 at T481 in vivo, however, TOPK did not phosphorylate PRC1 in vitro. TOPK induced the phosphorylation of PRC1 at T481 only when the cdk1/cyclin B1 existed simultaneously in vitro. Both the enzymatic activity of TOPK and association competence of TOPK with PRC1 were mandatory for this phosphorylation. TOPK binds to cdk1/cyclin B1, microtubules and PRC1 via its unique region near the C terminus. TOPK co-localized closely with cdk1 throughout the cell cycle in vivo. Collectively, these data indicate that TOPK, which makes a kinase-substrate complex with cdk1/cyclin B1 and PRC1 on microtubules during mitosis, enhances the cdk1/cyclin B1-dependent phosphorylation of PRC1 and thereby strongly promotes cytokinesis.  相似文献   

2.
Protein-tyrosine phosphatase 1B (PTP1B) and T cell protein-tyrosine phosphatase (TCPTP) are closely related intracellular phosphatases implicated in the control of glucose homeostasis. PTP1B and TCPTP can function coordinately to regulate protein tyrosine kinase signaling, and PTP1B has been implicated previously in the regulation of endoplasmic reticulum (ER) stress. In this study, we assessed the roles of PTP1B and TCPTP in regulating ER stress in the endocrine pancreas. PTP1B and TCPTP expression was determined in pancreases from chow and high fat fed mice and the impact of PTP1B and TCPTP over- or underexpression on palmitate- or tunicamycin-induced ER stress signaling assessed in MIN6 insulinoma β cells. PTP1B expression was increased, and TCPTP expression decreased in pancreases of mice fed a high fat diet, as well as in MIN6 cells treated with palmitate. PTP1B overexpression or TCPTP knockdown in MIN6 cells mitigated palmitate- or tunicamycin-induced PERK/eIF2α ER stress signaling, whereas PTP1B deficiency enhanced ER stress. Moreover, PTP1B deficiency increased ER stress-induced cell death, whereas TCPTP deficiency protected MIN6 cells from ER stress-induced death. ER stress coincided with the inhibition of Src family kinases (SFKs), which was exacerbated by PTP1B overexpression and largely prevented by TCPTP knockdown. Pharmacological inhibition of SFKs ameliorated the protective effect of TCPTP deficiency on ER stress-induced cell death. These results demonstrate that PTP1B and TCPTP play nonredundant roles in modulating ER stress in pancreatic β cells and suggest that changes in PTP1B and TCPTP expression may serve as an adaptive response for the mitigation of chronic ER stress.  相似文献   

3.
Lymphocytes migrate from the blood into tissue by binding to and migrating across endothelial cells. One of the endothelial cell adhesion molecules that mediate lymphocyte binding is VCAM-1. We have reported that binding to VCAM-1 activates endothelial cell NADPH oxidase for the generation of reactive oxygen species (ROS). The ROS oxidize and stimulate an increase in protein kinase C (PKC)alpha activity. Furthermore, these signals are required for VCAM-1-dependent lymphocyte migration. In this report, we identify a role for protein tyrosine phosphatase 1B (PTP1B) in the VCAM-1 signaling pathway. In primary cultures of endothelial cells and endothelial cell lines, Ab cross-linking of VCAM-1 stimulated an increase in serine phosphorylation of PTP1B, the active form of PTP1B. Ab cross-linking of VCAM-1 also increased activity of PTP1B. This activation of PTP1B was downstream of NADPH oxidase and PKCalpha in the VCAM-1 signaling pathway as determined with pharmacological inhibitors and antisense approaches. In addition, during VCAM-1 signaling, ROS did not oxidize endothelial cell PTP1B. Instead PTP1B was activated by serine phosphorylation. Importantly, inhibition of PTP1B activity blocked VCAM-1-dependent lymphocyte migration across endothelial cells. In summary, VCAM-1 activates endothelial cell NADPH oxidase to generate ROS, resulting in oxidative activation of PKCalpha and then serine phosphorylation of PTP1B. This PTP1B activity is necessary for VCAM-1-dependent transendothelial lymphocyte migration. These data show, for the first time, a function for PTP1B in VCAM-1-dependent lymphocyte migration.  相似文献   

4.
5.
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at approximately 1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin.  相似文献   

6.
Recent genetic studies in Drosophila identified Kibra as a novel regulator of the Hippo pathway, which controls tissue growth and tumorigenesis by inhibiting cell proliferation and promoting apoptosis. The cellular function and regulation of human KIBRA remain largely unclear. Here, we show that KIBRA is a phosphoprotein and that phosphorylation of KIBRA is regulated in a cell cycle-dependent manner with the highest level of phosphorylated KIBRA detected in mitosis. We further demonstrate that the mitotic kinases Aurora-A and -B phosphorylate KIBRA both in vitro and in vivo. We identified the highly conserved Ser(539) as the primary phosphorylation site for Aurora kinases. Moreover, we found that wild-type, but not catalytically inactive, protein phosphatase 1 (PP1) associates with KIBRA. PP1 dephosphorylated Aurora-phosphorylated KIBRA. KIBRA depletion impaired the interaction between Aurora-A and PP1. We also show that KIBRA associates with neurofibromatosis type 2/Merlin in a Ser(539) phosphorylation-dependent manner. Phosphorylation of KIBRA on Ser(539) plays a role in mitotic progression. Our results suggest that KIBRA is a physiological substrate of Aurora kinases and reveal a new avenue between KIBRA/Hippo signaling and the mitotic machinery.  相似文献   

7.
Allosteric inhibition of protein tyrosine phosphatase 1B   总被引:8,自引:0,他引:8  
Obesity and type II diabetes are closely linked metabolic syndromes that afflict >100 million people worldwide. Although protein tyrosine phosphatase 1B (PTP1B) has emerged as a promising target for the treatment of both syndromes, the discovery of pharmaceutically acceptable inhibitors that bind at the active site remains a substantial challenge. Here we describe the discovery of an allosteric site in PTP1B. Crystal structures of PTP1B in complex with allosteric inhibitors reveal a novel site located approximately 20 A from the catalytic site. We show that allosteric inhibitors prevent formation of the active form of the enzyme by blocking mobility of the catalytic loop, thereby exploiting a general mechanism used by tyrosine phosphatases. Notably, these inhibitors exhibit selectivity for PTP1B and enhance insulin signaling in cells. Allosteric inhibition is a promising strategy for targeting PTP1B and constitutes a mechanism that may be applicable to other tyrosine phosphatases.  相似文献   

8.
Polyaromatic quinones, such as the environmental pollutants 9,10-phenanthrenediones, elicit a wide range of responses including growth inhibition, immune suppression, and glucose normalization in diabetic models. Yet the molecular mechanisms behind these effects remain controversial. Here we report that many of them are oxygen-dependent and catalytic inactivators of protein tyrosine phosphatases (PTP). Under aerobic conditions, the PTP inactivation by 2-nitro-9,10-phenanthrenedione followed a pseudo-first-order process, with the rate of inactivation increasing nearly linearly with increasing inhibitor concentration, yielding apparent inactivation rate constants of 4300, 387, and 5200 M(-1) s(-1) at pH 7.2 against CD45, PTP1B, and LAR, respectively. The rate of CD45 inactivation increased approximately 25-fold from pH 6.0 to 7.5, with complete inactivation achieved using a catalytic amount (0.05 molar equiv) of the inhibitor. The quinone-catalyzed CD45 inactivation was prevented by catalase or superoxide dismutase. Inactivated CD45 after (125)I-9,10-phenanthrenedione treatment carried no radioactivity, indicating the absence of a stable inhibitor/enzyme complex. The activity of inactivated CD45 was partially restored ( approximately 10%) by hydroxylamine or dithiothreitol, supporting the presence of a small population of sulfenic acid or sulfenyl-amide species. Treatment of PTP1B with 2-nitro-9,10-phenanthrenedione resulted in the specific and sequential oxidation of the catalytic cysteine to the sulfinic and sulfonic acid. These results suggest that reactive oxygen species and the semiquinone radical, continuously generated during quinone-catalyzed redox cycling, mediate the specific catalytic cysteine oxidation. Naturally occurring quinones may act as efficient regulators of protein tyrosine phosphorylation in biological systems. Aberrant phosphotyrosine homeostasis resulting from continued polyaromatic hydrocarbon quinone exposure may play a significant role in their disease etiology.  相似文献   

9.
We have developed a protocol for rapid purification of T cell protein tyrosine phosphatase (TCPTP) and the structurally related protein tyrosine phosphatase-1B (PTP-1B) from bacterial cells. The pH profile for TCPTP was bell-shaped with an optimum of 5.5. The catalytic domain and full-length versions of TCPTP bound a potent inhibitor with affinities similar to those of PTP-1B. The K(m) values for the catalytic domains of TCPTP and PTP-1B increased with increasing ionic strength, whereas the k(cat) values remained unchanged. Arrhenius plots revealed that TCPTP and PTP-1B possess similar activation energies of 25.3+/-1.2 and 18.4+/-3.0 kJ/mol, respectively. Increasing solvent microviscosity (up to 40% (w/v) sucrose) did not affect k(cat)/K(m) of either enzyme. However, high sucrose concentrations protected both enzymes from thermal inactivation. These studies show that, although they share a 72% amino acid sequence identity within their catalytic domains, TCPTP and PTP-1B are functionally very similar in vitro.  相似文献   

10.
Regulation of protein tyrosine phosphatase 1B by sumoylation   总被引:3,自引:0,他引:3  
Protein-tyrosine phosphatase 1B (PTP1B) is an ubiquitously expressed enzyme that negatively regulates growth-factor signalling and cell proliferation by binding to and dephosphorylating key receptor tyrosine kinases, such as the insulin receptor. It is unclear how the activity of PTP1B is regulated. Using a yeast two-hybrid assay, a protein inhibitor of activated STAT1 (PIAS1) was isolated as a PTP1B-interacting protein. Here, we show that PIAS1, which functions as a small ubiquitin-like modifier (SUMO) E3 ligase, associates with PTP1B in mammalian fibroblasts and catalyses sumoylation of PTP1B. Sumoylation of PTP1B reduces its catalytic activity and inhibits the negative effect of PTP1B on insulin receptor signalling and on transformation by the oncogene v-crk. Insulin-stimulated sumoylation of endogenous PTP1B results in a transient downregulation of the enzyme; this event does not occur when the endogenous enzyme is replaced with a sumoylation-resistant mutant of PTP1B. These results suggest that sumoylation, which has been implicated primarily in processes in the nucleus and nuclear pore, also modulates a key enzyme-substrate signalling complex that regulates metabolism and cell proliferation.  相似文献   

11.
The non-transmembrane protein tyrosine phosphatase, PTP1B, comprises 435 amino acids, of which the C-terminal 114 residues have been implicated in controlling both localization and function of this enzyme. Inspection of the sequence of the C-terminal segment reveals a number of potential sites of phosphorylation. We show that PTP1B is phosphorylated on seryl residues in vivo. Increased phosphorylation of PTP1B is seen to accompany the transition from G2 to M phase of the cell cycle. Two major tryptic phosphopeptides appear in two-dimensional maps of PTP1B from mitotic cells. One of these comigrates with the peptide generated following phosphorylation of PTP1B in vitro at Ser386 by the mitotic protein Ser/Thr kinase p34cdc2:cyclin B. The site of phosphorylation that is responsible for the pronounced retardation in the electrophoretic mobility of PTP1B from mitotic cells has been identified by site directed mutagenesis as Ser352. The identify of the kinase responsible for this modification is presently unknown. We also show that stimulation of HeLa cells with the phorbol ester TPA enhances phosphorylation of PTP1B. Two dimensional phosphopeptide mapping reveals that the bulk of the phosphate is in a single tryptic peptide. The site, identified as Ser378, is also the site of phosphorylation by protein kinase C (PKC) in vitro. Thus the TPA-stimulated phosphorylation of PTP1B in vivo appears to result directly from phosphorylation by PKC. The effect of phosphorylation on the activity of PTP1B has been examined in immunoprecipitates from TPA-treated and nocodazole-arrested cells. TPA treatment does not appear to affect activity directly, whereas the activity of PTP1B from nocodazole-arrested cells is only 70% of that from asynchronous populations.  相似文献   

12.
Dendritic cells (DCs) promote immune responses to foreign Ags and immune tolerance to self-Ags. Deregulation of DCs is implicated in autoimmunity, but the molecules that regulate DCs to protect against autoimmunity have remained unknown. In this study, we show that mice lacking the protein tyrosine phosphatase Shp1 specifically in DCs develop splenomegaly associated with more CD11c(+) DCs. Splenic DCs from the mutant mice showed upregulation of CD86 and CCR7 expression and of LPS-induced production of proinflammatory cytokines. The mice manifested more splenic Th1 cells, consistent with the increased ability of their DCs to induce production of IFN-γ by Ag-specific T cells in vitro. The number of splenic CD5(+)CD19(+) B-1a cells and the serum concentrations of Igs M and G2a were also increased in the mutant mice. Moreover, aged mutant mice developed glomerulonephritis and interstitial pneumonitis together with increased serum concentrations of autoantibodies. Shp1 is thus a key regulator of DC functions that protects against autoimmunity.  相似文献   

13.
Although hydrogen peroxide (H(2)O(2)) is better known for its cytotoxic effects, in recent years it has been shown to play a crucial role in eukaryotic signal transduction. In respiratory tract epithelial cells, the dual oxidase (DUOX) proteins 1 and 2 has been identified as the cellular source of H(2)O(2). However, the expression of DUOX1 or DUOX2 has not yet been examined in keratinocytes. In this study, using a DNA microarray, we demonstrated that, of the seven NOX/DUOX family members in normal human epidermal keratinocytes (NHEK), IL-4/IL-13 treatment augments the expression of only DUOX1 mRNA. We next confirmed the IL-4/IL-13 induction of DUOX1 in NHEK at the mRNA and protein level using quantitative real-time PCR and Western blotting, respectively. In addition, we demonstrated that this augmented DUOX1 expression was accompanied by increased H(2)O(2) production, which was significantly suppressed both by diphenyleneiodonium, an inhibitor of NADPH oxidase, and by small interfering RNA against DUOX1. Finally, we demonstrated that the increased expression of DUOX1 in IL-4/IL-13-treated NHEK augments STAT6 phosphorylation via oxidative inactivation of protein tyrosine phosphatase 1B. These results revealed a novel role of IL-4/IL-13-induced DUOX1 expression in making a positive feedback loop for IL-4/IL-13 signaling in keratinocytes.  相似文献   

14.
Protein-tyrosine phosphatase (PTP) 1B has been implicated in negative regulation of insulin action, although little is known of the ability of insulin to regulate PTP1B itself. The ability of insulin to regulate phosphorylation and activation of PTP1B was probed in vivo. Challenge with insulin in vivo provoked a transient, sharp increase in the phosphotyrosine content of PTP1B in fat and skeletal muscle that peaked within 15 min. Insulin stimulated a decline of 60--70% in PTP1B activity. In mouse adipocytes, the inhibition of PTP1B activity and increased tyrosine phosphorylation of the enzyme were blocked by the insulin receptor tyrosine kinase inhibitor AG1024. Phosphoserine content of PTP1B declined in response to insulin stimulation. Elevation of intracellular cyclic AMP provokes a sharp increase in PTP1B activity and leads to increased phosphorylation of serine residues and decreased tyrosine phosphorylation. Suppression of cyclic AMP levels or inhibition of protein kinase A leads to a sharp decline in PTP1B activity, a decrease in phosphoserine content, and an increase in PTP1B phosphotyrosine content. PTP1B appears to be a critical point for insulin and catecholamine counter-regulation.  相似文献   

15.
Signal transduction via the B cell AgR complex has recently been shown to be dependent on the activation of one or more protein tyrosine kinases. Similarly, it has been found that signal transduction requires the expression of the protein tyrosine phosphatase CD45. Thus, transduction of a signal after AgR cross-linking must involve the coordinate interaction of these two enzymatic activities. It is therefore logical to hypothesize that the competence of the B cell to respond to ligands that bind the AgR may be dependent on the maintenance of an equilibrium between the tyrosine phosphorylation and dephosphorylation of specific signal transduction components. We have demonstrated in the present study that in resting B cells, the basal level of AgR complex tyrosine phosphorylation is regulated by cellular protein tyrosine phosphatases. Treatment of cells with the protein tyrosine phosphatase inhibitor, Na3VO4, resulted in rapid hyperphosphorylation of the receptor complex. Based on this observation, experiments were designed to examine the role of CD45 in regulation of AgR complex phosphorylation. Treatment of B cells with anti-CD45 mAb alone was found to have no effect on cytoskeletal association of CD45 or on its distribution within the membrane. Addition of a secondary cross-linking reagent, however, induced the association of CD45 with the cytoskeleton and caused capping. Subsequent studies demonstrated that increased tyrosine phosphorylation of the mIg-associated proteins MB-1 and B29 could be induced after incubating cells with anti-CD45 mAb and a secondary cross-linker, but not after the addition of anti-CD45 mAb alone. Changes in tyrosine phosphorylation of MB-1 and B29 were found to correlate with the cytoskeletal association of CD45. Interestingly, although cross-linking CD45 induced alterations in its association with the cytoskeleton and in its distribution within the membrane, no significant change in the level of protein tyrosine phosphatase activity could be detected under these conditions. These findings support the possibility that ligand binding to CD45 can induce biochemical and/or physical alterations in the molecule that presumably inhibit its ability to interact with specific substrates in the cell, thereby shifting the established equilibrium between tyrosine-specific phosphorylation and dephosphorylation.  相似文献   

16.
The protein tyrosine phosphatase-1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) have been implicated in down-regulation of tyrosine kinase receptors, conferring anti-oncogenic functions to these PTPases. However, recent work has shown that PTP1B is positively implicated in oncogenic properties of breast cancer cells by regulating the ERK pathway. Here, we studied the function of PTP1B and TC-PTP in IGF-2-induced growth, survival and migration of MCF-7 breast cancer cells. Using siRNA, we showed that reduction in the expression of these PTPases decreased cell growth and ERK phosphorylation. Reduction in the expression of these PTPases did not impair IGF-2 effects on cell survival to acute treatment with 4-OH Tamoxifen. In contrast, IGF-2-induced MCF-7 cell migration was markedly impaired by reduction of PTP1B or TC-PTP expression, independently of the ERK pathway. This novel finding reinforces the potential role of these PTPases as therapeutic targets for treatment of breast cancer.  相似文献   

17.
Echistatin, a 5000-Da disintegrin, is a strong competitive inhibitor of platelet alpha(IIb)beta(3) binding to fibrinogen. In addition to its antiplatelet activity, echistatin also exhibits activating properties by inducing a switch of alpha(IIb)beta(3) conformation towards an active state. However, soluble echistatin, which is a monomeric ligand, provides only receptor affinity modulation, but it is unable to activate integrin-dependent intracellular signals. Since proteins may exhibit a multivalent functionality as a result of their absorption to a substrate, in this study we evaluated whether immobilised echistatin is able to stimulate platelet adhesion and signalling. The immobilisation process led to an increase of echistatin affinity for integrin(s) expressed on resting platelets. Unlike the soluble form, immobilised echistatin bound at comparable extent either unstimulated or ADP-activated platelets. Furthermore, echistatin presented in this manner was effective in stimulating integrin-dependent protein tyrosine phosphorylation. Platelets adhering to immobilised echistatin showed a pattern of total tyrosine phosphorylated proteins resembling that of fibrinogen-attached platelets. In particular, solid-phase echistatin induced a strong phosphorylation of tyrosine kinases pp72(syk) and pp125(FAK). Inhibitors of platelet signalling, such as apyrase, prostaglandin E(1), cytochalasin D and bisindolylmaleimide, while not affecting platelet adhesion to immobilised echistatin, abolished pp125(FAK) phosphorylation. This suggests that signals activating protein kinase C function, dense granule secretion and cytoskeleton assembly might be involved in echistatin-induced pp125(FAK) phosphorylation.  相似文献   

18.
Potent,selective inhibitors of protein tyrosine phosphatase 1B   总被引:4,自引:0,他引:4  
We have previously reported a novel series of oxalyl-aryl-amino benzoic acid-based, catalytic site-directed, competitive, reversible protein tyrosine phosphatase 1B (PTP1B) inhibitors. With readily access to key intermediates, we utilized a solution phase parallel synthesis approach and rapidly identified a highly potent PTP1B inhibitor (19, K(i)=76 nM) with moderate selectivity (5-fold) over T-cell PTPase (TCPTP) through interacting with a second phosphotyrosine binding site (site 2) in the close proximity to the catalytic site.  相似文献   

19.
A novel pyridothiophene inhibitor of PTP1B was discovered by rational screening of phosphotyrosine mimics at high micromolar concentrations. The potency of this lead compound has been improved significantly by medicinal chemistry guided by X-ray crystallography and molecular modeling. Excellent consistency has been observed between structure-activity relationships and structural information from PTP1B-inhibitor complexes.  相似文献   

20.
Naturally occurring flavonoids co-exist as glycoside conjugates, which dominate aglycones in their content. To unveil the structure-activity relationship of a naturally occurring flavonoid, we investigated the effects of the glycosylation of naringenin on the inhibition of enzyme systems related to diabetes (protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase) and on glucose uptake in the insulin-resistant state. Among the tested naringenin derivatives, prunin, a single-glucose-containing flavanone glycoside, potently inhibited PTP1B with an IC50 value of 17.5 ± 2.6 µM. Naringenin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50: 5.4 ± 0.30 µM). In addition, prunin significantly enhanced glucose uptake in a dose-dependent manner in insulin-resistant HepG2 cells. Regarding the inhibition of α-glucosidase, naringenin exhibited more potent inhibitory activity (IC50: 10.6 ± 0.49 µM) than its glycosylated forms and the reference inhibitor, acarbose (IC50: 178.0 ± 0.27 µM). Among the glycosides, only prunin (IC50: 106.5 ± 4.1 µM) was more potent than the positive control. A molecular docking study revealed that prunin had lower binding energy and higher binding affinity than glycosides with higher numbers of H-bonds, suggesting that prunin is the best fit to the PTP1B active site cavity. Therefore, in addition to the number of H-bonds present, possible factors affecting the protein binding and PTP1B inhibition of flavanones include their fit to the active site, hydrogen-bonding affinity, Van der Waals interactions, H-bond distance, and H-bond stability. Furthermore, this study clearly depicted the association of the intensity of bioactivity with the arrangement and characterization of the sugar moiety on the flavonoid skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号