首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Glucose–galactose malabsorption (GGM) is an autosomal recessive disorder caused by defects in the Na+/glucose cotransporter (SGLT1). Neonates present with severe diarrhea while on any diet containing glucose and/or galactose [1]. This study focuses on a patient of Swiss and Dominican descent. All 15 exons of SGLT1 were screened using single stranded conformational polymorphism analyses, and aberrant PCR products were sequenced. Two missense mutations, Gly318Arg and Ala468Val, were identified. SGLT1 mutants were expressed in Xenopus laevis oocytes for radiotracer uptake, electrophysiological experiments, and Western blotting. Uptakes of [14C]α-methyl-d-glucoside by the mutants were 5% or less than that of wild-type. Two-electrode voltage-clamp experiments confirmed the transport defects, as no noticeable sugar-induced current could be elicited from either mutant [2]. Western blots of cell protein showed levels of each SGLT1 mutant protein comparable to that of wild-type, and that both were core-glycosylated. Presteady-state current measurements indicated an absence of SGLT1 in the plasma membrane. We suggest that the compound heterozygote missense mutations G318R and A468V lead to GGM in this patient by defective trafficking of mutant proteins from the endoplasmic reticulum to the plasma membrane.  相似文献   

2.
Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to humans. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype-specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep–MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype-specific antibodies and detecting the unique and serotype-specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep–MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity 5-fold with toxin spiked into buffer solution or different biological matrices.  相似文献   

3.
Structural pore models are generated for Vpu1–32WT from HIV-1 as well as for three mutants W23L, S24L and R31V. A computational methodology is employed which samples the whole conformational space of the pentameric assemblies of Vpu. The analysis of the related energy landscape reveals a small set of reasonable pore models, which are thoroughly investigated regarding their structural properties as well as their putative stability under native-like conditions. The models are also discussed in respect of earlier experimental findings about their channel activities. The study proposes functional pores reflecting the experimentally found conductance states of Vpu and its mutants.  相似文献   

4.
Katanin is an evolutionarily conserved microtubule (MT)-severing complex implicated in multiple aspects of MT dynamics. In Caenorhabditis elegans, the katanin homologue MEI-1 is required for meiosis, but must be inactivated before mitosis. Here we show that PPFR-1, a regulatory subunit of a trimeric protein phosphatase 4 complex, enhanced katanin MT-severing activity during C. elegans meiosis. Loss of ppfr-1, similarly to the inactivation of MT severing, caused a specific defect in meiosis II spindle disassembly. We show that a fraction of PPFR-1 was degraded after meiosis, contributing to katanin inactivation. PPFR-1 interacted with MEL-26, the substrate recognition subunit of the CUL-3 RING E3 ligase (CRL3MEL-26), which also targeted MEI-1 for post-meiotic degradation. Reversible protein phosphorylation of MEI-1 may ensure temporal activation of the katanin complex during meiosis, whereas CRL3MEL-26-mediated degradation of both MEI-1 and its activator PPFR-1 ensure efficient katanin inactivation in the transition to mitosis.  相似文献   

5.
Mechanisms by which microtubule plus ends interact with regions of cell–cell contact during tissue development and morphogenesis are not fully understood. We characterize a previously unreported interaction between the microtubule binding protein end-binding 1 (EB1) and the desmosomal protein desmoplakin (DP), and demonstrate that DP–EB1 interactions enable DP to modify microtubule organization and dynamics near sites of cell–cell contact. EB1 interacts with a region of the DP N terminus containing a hotspot for pathogenic mutations associated with arrhythmogenic cardiomyopathy (AC). We show that a subset of AC mutations, in addition to a mutation associated with skin fragility/woolly hair syndrome, impair gap junction localization and function by misregulating DP–EB1 interactions and altering microtubule dynamics. This work identifies a novel function for a desmosomal protein in regulating microtubules that affect membrane targeting of gap junction components, and elucidates a mechanism by which DP mutations may contribute to the development of cardiac and cutaneous diseases.  相似文献   

6.

Background

The relationship between the pathogenic amyloid β-peptide species Aβ1–42 and tau pathology has been well studied and suggests that Aβ1–42 can accelerate tau pathology in vitro and in vivo. The manners if any in which Aβ1–40 interacts with tau remains poorly understood. In order to answer this question, we used cell-based system, transgenic fly and transgenic mice as models to study the interaction between Aβ1–42 and Aβ1–40.

Results

In our established cellular model, live cell imaging (using confocal microscopy) combined with biochemical data showed that exposure to Aβ1–42 induced cleavage, phosphorylation and aggregation of wild-type/full length tau while exposure to Aβ1–40 didn’t. Functional studies with Aβ1–40 were carried out in tau-GFP transgenic flies and showed that Aβ1–42, as previously reported, disrupted cytoskeletal structure while Aβ1–40 had no effect at same dose. To further explore how Aβ1–40 affects tau pathology in vivo, P301S mice (tau transgenic mice) were injected intracerebrally with either Aβ1–42 or Aβ1–40. We found that treatment with Aβ1–42 induced tau phosphorylation, cleavage and aggregation of tau in P301S mice. By contrast, Aβ1–40 injection didn’t alter total tau, phospho-tau (recognized by PHF-1) or cleavage of tau, but interestingly, phosphorylation at Ser262 was shown to be significantly decreased after direct inject of Aβ1–40 into the entorhinal cortex of P301S mice.

Conclusions

These results demonstrate that Aβ1–40 plays different role in tau pathogenesis compared to Aβ1–42. Aβ1–40 may have a protective role in tau pathogenesis by reducing phosphorylation at Ser262, which has been shown to be neurotoxic.
  相似文献   

7.
Fibroblast growth factor 2 (FGF2) is a major regulator of developmental, pathological, and therapeutic angiogenesis. Its activity is partially mediated by binding to syndecan 4 (S4), a proteoglycan receptor. Angiogenesis requires polarized activation of the small guanosine triphosphatase Rac1, which involves localized dissociation from RhoGDI1 and association with the plasma membrane. Previous work has shown that genetic deletion of S4 or its adapter, synectin, leads to depolarized Rac activation, decreased endothelial migration, and other physiological defects. In this study, we show that Rac1 activation downstream of S4 is mediated by the RhoG activation pathway. RhoG is maintained in an inactive state by RhoGDI1, which is found in a ternary complex with synectin and S4. Binding of S4 to synectin increases the latter''s binding to RhoGDI1, which in turn enhances RhoGDI1''s affinity for RhoG. S4 clustering activates PKCα, which phosphorylates RhoGDI1 at Ser96. This phosphorylation triggers release of RhoG, leading to polarized activation of Rac1. Thus, FGF2-induced Rac1 activation depends on the suppression of RhoG by a previously uncharacterized ternary S4–synectin–RhoGDI1 protein complex and activation via PKCα.  相似文献   

8.
Bcl-2-interacting mediator of cell death (Bim) is a pro-apoptotic B-cell lymphoma 2 family member implicated in numerous apoptotic stimuli. In particular, Bim is required for cell death mediated by antimitotic agents, however, mitotic regulation of Bim remains poorly understood. Here, we show that the major splice variant of Bim, BimEL, is regulated during mitosis by the Aurora A kinase and protein phosphatase 2A (PP2A). We observed that BimEL is phosphorylated by Aurora A early in mitosis and reversed by PP2A after mitotic exit. Aurora A phosphorylation stimulated binding of BimEL to the F-box protein beta-transducin repeat containing E3 ubiquitin protein ligase and promoted ubiquitination and degradation of BimEL. These findings describe a novel mechanism by which the oncogenic kinase Aurora A promotes cell survival during mitosis by downregulating proapoptotic signals. Notably, we observed that knockdown of Bim significantly increased resistance of cells to the Aurora A inhibitor MLN8054. Inhibitors of Aurora A are currently under investigation as cancer chemotherapeutics and our findings suggest that efficacy of this class of drugs may function in part by enhancing apoptotic activity of BimEL.  相似文献   

9.

Background

Epithelial–mesenchymal transition (EMT) is the major pathophysiological process in lung fibrosis observed in chronic obstructive pulmonary disease (COPD) and lung cancer. Smoking is a risk factor for developing EMT, yet the mechanism remains largely unknown. In this study, we investigated the role of Rac1 in cigarette smoke (CS) induced EMT.

Methods

EMT was induced in mice and pulmonary epithelial cells by exposure of CS and cigarette smoke extract (CSE) respectively.

Results

Treatment of pulmonary epithelial cells with CSE elevated Rac1 expression associated with increased TGF-β1 release. Blocking TGF-β pathway restrained CSE-induced changes in EMT-related markers. Pharmacological inhibition or knockdown of Rac1 decreased the CSE exposure induced TGF-β1 release and ameliorated CSE-induced EMT. In CS-exposed mice, pharmacological inhibition of Rac1 reduced TGF-β1 release and prevented aberrations in expression of EMT markers, suggesting that Rac1 is a critical signaling molecule for induction of CS-stimulated EMT. Furthermore, Rac1 inhibition or knockdown abrogated CSE-induced Smad2 and Akt (PKB, protein kinase B) activation in pulmonary epithelial cells. Inhibition of Smad2, PI3K (phosphatidylinositol 3-kinase) or Akt suppressed CSE-induced changes in epithelial and mesenchymal marker expression.

Conclusions and general significance

Altogether, these data suggest that CS initiates EMT through Rac1/Smad2 and Rac1/PI3K/Akt signaling pathway. Our data provide new insights into the fundamental basis of EMT and suggest a possible new course of therapy for COPD and lung cancer.  相似文献   

10.
Epithelial–mesenchymal transition (EMT) is associated with pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF). In this study, we investigated EMT of human pulmonary epithelial-derived cells (A549). A549 cells was either cultured by itself or co-cultured with THP-1 macrophages under normoxic (21% O2) and hypoxic (2% O2) conditions. We evaluated the presence of EMT by determining the expression of EMT markers, E-cadherin, vimentin, and fibronectin. To determine the role of TGF-β1 and IL-1β in EMT of the A549 cells, we analyzed the effects of blocking their activity with TGF-β1 inhibitor or IL-1β neutralizing antibody respectively. The A549 cells presented EMT when they were co-cultured with THP-1 macrophages. The EMT of the A549 cells co-cultured with THP-1 macrophages was exacerbated under hypoxia. In addition, the EMT were prevented by the addition of TGF-β1 type I receptor kinase inhibitor. The hypoxic condition increased the mRNA levels of TGF-β1 in A549 cells and THP-1 macrophages and that of IL-1β in THP-1 macrophages when each cells were co-cultured. Anti-IL-1β neutralizing antibody attenuated TGF-β1 secretion in co-culture media under hypoxic conditions. Thus, the IL-1β from THP-1 macrophages up-regulated the TGF-β1 from A549 cells and THP-1 macrophages, and then the TGF-β1 from both cells induced and promoted the EMT of A549 cells when they were co-cultured under hypoxia. Together, these results demonstrate that the interaction between type II pneumocytes and macrophages under hypoxia is necessary for the development of pulmonary fibrosis.  相似文献   

11.
12.
《Cellular signalling》2014,26(10):2131-2137
Metastases are the major cause of death from cancer. IGF-1 signaling pathway has been shown to have strong implication in the epithelial–mesenchymal transition (EMT) process. However, the mechanisms of how IGF-1 promotes EMT have not been fully elucidated. Mucin 1 (MUC1), a transmembrane glycoprotein, engages in multiple cancer-related signaling pathways and functions as an oncoprotein that contributes to metastases. Here we provide evidence showing that IGF-1 upregulates MUC1 expression in MCF-7 cells in a PI3K/Akt signaling pathway-dependent manner. The overexpression of MUC1 is critical for IGF-1-induced EMT of MCF-7 cells because the knockdown of MUC1 prevented the EMT of MCF-7 cells as demonstrated by various EMT markers including the expression of E-cadherin, N-cadherin, vimentin, fibronectin and the nuclear translocalization of β-catenin. On the other hand, the knockdown of MUC1 had no impact on IGF-1-induced activation of PI3K/Akt or MAPK. In summary, our study demonstrated MUC1 as a critical downstream effector that mediates IGF-1-induced EMT of MCF-7 cells and suggested that MUC1 might be a potential therapeutic target for preventing tumor metastases.  相似文献   

13.
In this study, we investigated the effect of caffeine overexposure on corneal innervation in the early chicken embryo. Caffeine administration restricted corneal innervation by affecting trigeminal nerve development. Immunohistochemistry for phospho-Histone3 (pHIS3) and C-caspase3 revealed that cell survival was repressed by caffeine administration. Whole-mount in situ hybridization against semaphorin 3A (Sema3A) and neuropilin-1 (Nrp1) showed that both caffeine and 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH, a free radical generator) administration upregulates the expression of both Sema3A and Nrp1. Next, we demonstrated that lens ablation in the developing chicken embryos significantly affected NF-labeled periocular nerve fascicles and innervation to the central eye region. Subsequently, we used a neuroblastoma cell line to investigate in vitro whether or not Sema3A–Nrp1 signaling exerts a key role on the caffeine-suppressed neuron survival. Knocking-down Sema3A through transfection with Sema3A-siRNA dramatically decreased the responsiveness of cells to caffeine administration, as well as cell apoptosis. We suggest that Sema3A–Nrp1 signaling regulates Trp53 and Cdkn1a through Slit2–Robo1 and Ephb2. Taken together, we speculate here that caffeine-enhanced reactive oxygen species upregulates Sema3A–Nrp1 expression in the lens and periocular tissues, resulting in corneal cell apoptosis, accompanied by its chemorepellent role on the invasion of the developing cornea by trigeminal sensory fibers.  相似文献   

14.
15.
Aβ1-42 measurement in CSF is an important biochemical marker for Alzheimer disease (AD). However, our understanding of why this biomarker is predictive and why it is often difficult to measure in a reproducible fashion is still lacking. To study these questions, the concentration of Aβ1-42 in CSF was compared before and after denaturation with 6M guanidine and reverse-phase HPLC. Measurement of the Aβ1-42 after denaturation and reverse-phase HPLC demonstrated that considerably more Aβ1-42 was present in CSF than revealed when assaying non-denatured CSF. A comparison of Aβ1-42 concentrations before and after HPLC in AD CSF with that in normal controls suggested that matrix interference may affect the differentiation between the diagnostic groups. A similar effect was observed with dilutions of crude CSF. Together, these results suggested that at least part of the mechanism by which low Aβ1-42 concentrations in CSF function as a biomarker of AD is related to matrix components which preferentially hide a portion of the Aβ1-42 from detection in AD CSF. In contrast, we show that the association of the APOEε4 allele with lower Aβ1-42 concentrations in CSF is preserved even after denaturation and HPLC. A similar relationship between the presence of the APOEε4 allele and lower concentrations of Aβ1-40 was also apparent, thereby generating similar ratios of Aβ1-42/ Aβ1-40 across the APOE genotypes. The results from the present study suggested that Aβ1-42 in CSF functions as a biomarker of AD in tandem with other CSF matrix components that are increased in AD CSF. Further studies are needed to identify which matrix factors (e.g. binding of Aβ to proteins) underlie the increased detection of Aβ1-42 concentrations after denaturation and HPLC. The data also suggested that denaturation and HPLC of CSF may be a useful approach for studies using Aβ1-42 as a pharmacodynamic marker or in other paradigms where measurement of total non-covalently bound Aβ1-42 is required.  相似文献   

16.
17.
The unique functional properties and molecular identity of neuronal cell populations rely on cell type–specific gene expression programs. Alternative splicing represents a powerful mechanism for expanding the capacity of genomes to generate molecular diversity. Neuronal cells exhibit particularly extensive alternative splicing regulation. We report a highly selective expression of the KH domain–containing splicing regulators SLM1 and SLM2 in the mouse brain. Conditional ablation of SLM1 resulted in a severe defect in the neuronal isoform content of the polymorphic synaptic receptors neurexin-1, -2, and -3. Thus, cell type–specific expression of SLM1 provides a mechanism for shaping the molecular repertoires of synaptic adhesion molecules in neuronal populations in vivo.  相似文献   

18.
Mutations in the X chromosomal tRNA 2′?O?methyltransferase FTSJ1 cause intellectual disability (ID). Although the gene is ubiquitously expressed affected individuals present no consistent clinical features beyond ID. In order to study the pathological mechanism involved in the aetiology of FTSJ1 deficiency-related cognitive impairment, we generated and characterized an Ftsj1 deficient mouse line based on the gene trapped stem cell line RRD143. Apart from an impaired learning capacity these mice presented with several statistically significantly altered features related to behaviour, pain sensing, bone and energy metabolism, the immune and the hormone system as well as gene expression. These findings show that Ftsj1 deficiency in mammals is not phenotypically restricted to the brain but affects various organ systems. Re-examination of ID patients with FTSJ1 mutations from two previously reported families showed that several features observed in the mouse model were recapitulated in some of the patients. Though the clinical spectrum related to Ftsj1 deficiency in mouse and man is variable, we suggest that an increased pain threshold may be more common in patients with FTSJ1 deficiency. Our findings demonstrate novel roles for Ftsj1 in maintaining proper cellular and tissue functions in a mammalian organism.  相似文献   

19.
TORC1 regulates cellular growth, metabolism, and autophagy by integrating various signals, including nutrient availability, through the small GTPases RagA/B/C/D in mammals and Gtr1/2 in budding yeast. Rag/Gtr is anchored to the lysosomal/vacuolar membrane by the scaffold protein complex Ragulator/Ego. Here we show that Ego consists of Ego1 and Ego3, and novel subunit Ego2. The ∆ego2 mutant exhibited only partial defects both in Gtr1-dependent TORC1 activation and Gtr1 localization on the vacuole. Ego1/2/3, Gtr1/2, and Tor1/Tco89 were colocalized on the vacuole and associated puncta. When Gtr1 was in its GTP-bound form and TORC1 was active, these proteins were preferentially localized on the vacuolar membrane, whereas when Gtr1 was in its GDP-bound form, they were mostly localized on the puncta. The localization of TORC1 to puncta was further facilitated by direct binding to Gtr2, which is involved in suppression of TORC1 activity. Thus regulation of TORC1 activity through Gtr1/Gtr2 is tightly coupled to the dynamic relocation of these proteins.  相似文献   

20.
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine, which plays an important role in the immune response and signal transduction both in the periphery and the central nervous system (CNS). Various diseases of the CNS, including neurodegenerative disorders, vascular lesions, meningo-encephalitis or status epilepticus are accompanied by elevated levels of IL-1β. Different domains within the IL-lβ protein are responsible for distinct functions. The IL-lβ domain in position 208–240 has pyrogenic properties, while the domain in position 193–195 exerts anti-inflammatory effects. Previous studies provide little evidence about the effect of the domain in position 187–207 on the body temperature. Therefore, the aim of the present study was to investigate the action of IL-1β (187–207) and its interaction with IL-1β (193–195) on the body temperature. IL fragments were administered intracerebroventricularly and the body temperature was measured rectally in male Wistar rats. IL-1β (187–207) induced hyperthermia, while IL-1β (193–195) did not influence the core temperature considerably. In co-administration, IL-1β (193–195) completely abolished the IL-1β (187–207)-induced hyperthermia. The non-steroid anti-inflammatory drug metamizole also reversed completely the action of IL-1β (187–207). Our results provide evidence that the IL-lβ domain in position 187–207 has hyperthermic effect. This effect is mediated through prostaglandin E2 stimulation and other mechanisms may also be involved in the action of IL-1β (187–207). It also suggests that IL-lβ domain in position 187–207 and IL-1β (193–195) fragment may serve as novel target for treatment of disorders accompanied with hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号