首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribosome synthesis involves the concomitance of pre-rRNA processing and ribosomal protein assembly. In eukaryotes, this is a complex process that requires the participation of specific sequences and structures within the pre-rRNAs, at least 200 trans-acting factors and the ribosomal proteins. There is little information on the function of individual 60S ribosomal proteins in ribosome synthesis. Herein, we have analysed the contribution of ribosomal protein L35 in ribosome biogenesis. In vivo depletion of L35 results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase, northern hybridization and primer extension analyses show that processing of the 27SB to 7S pre-rRNAs is strongly delayed upon L35 depletion. Most likely as a consequence of this, release of pre-60S ribosomal particles from the nucleolus to the nucleoplasm is also blocked. Deletion of RPL35A leads to similar although less pronounced phenotypes. Moreover, we show that L35 assembles in the nucleolus and binds to early pre-60S ribosomal particles. Finally, flow cytometry analysis indicated that L35-depleted cells mildly delay the G1 phase of the cell cycle. We conclude that L35 assembly is a prerequisite for the efficient cleavage of the internal transcribed spacer 2 at site C2.  相似文献   

2.
To better define the roles of assembly factors required for eukaryotic ribosome biogenesis, we have focused on one specific step in maturation of yeast 60 S ribosomal subunits: processing of 27SB pre-ribosomal RNA. At least 14 assembly factors, the ‘B-factor’ proteins, are required for this step. These include most of the major functional classes of assembly factors: RNA-binding proteins, scaffolding protein, DEAD-box ATPases and GTPases. We have investigated the mechanisms by which these factors associate with assembling ribosomes. Our data establish a recruitment model in which assembly of the B-factors into nascent ribosomes ultimately leads to the recruitment of the GTPase Nog2. A more detailed analysis suggests that this occurs in a hierarchical manner via two largely independent recruiting pathways that converge on Nog2. Understanding recruitment has allowed us to better determine the order of association of all assembly factors functioning in one step of ribosome assembly. Furthermore, we have identified a novel subcomplex composed of the B-factors Nop2 and Nip7. Finally, we identified a means by which this step in ribosome biogenesis is regulated in concert with cell growth via the TOR protein kinase pathway. Inhibition of TOR kinase decreases association of Rpf2, Spb4, Nog1 and Nog2 with pre-ribosomes.  相似文献   

3.
The precise functions of most of the ~200 assembly factors and 79 ribosomal proteins required to construct yeast ribosomes in vivo remain largely unexplored. To better understand the roles of these proteins and the mechanisms driving ribosome biogenesis, we examined in detail one step in 60S ribosomal subunit assembly-processing of 27SA(3) pre-rRNA. Six of seven assembly factors required for this step (A(3) factors) are mutually interdependent for association with preribosomes. These A(3) factors are required to recruit Rrp17, one of three exonucleases required for this processing step. In the absence of A(3) factors, four ribosomal proteins adjacent to each other, rpL17, rpL26, rpL35, and rpL37, fail to assemble, and preribosomes are turned over by Rat1. We conclude that formation of a neighbourhood in preribosomes containing the A(3) factors establishes and maintains stability of functional preribosomes containing 27S pre-rRNAs. In the absence of these assembly factors, at least one exonuclease can switch from processing to turnover of pre-rRNA.  相似文献   

4.
5.
Mutational analysis has shown that the integrity of the region in domain III of 25S rRNA that is involved in binding of ribosomal protein L25 is essential for the production of mature 25S rRNA in the yeast Saccharomyces cerevisiae. However, even structural alterations that do not noticeably affect recognition by L25, as measured by an in vitro assay, strongly reduced 25S rRNA formation by inhibiting the removal of ITS2 from the 27SB precursor. In order to analyze the role of L25 in yeast pre-rRNA processing further we studied the effect of genetic depletion of the protein or mutation of each of its three previously identified functional domains, involved in nuclear import (N-terminal), RNA binding (central) and 60S subunit assembly (C-terminal), respectively. Depletion of L25 or mutating its (pre-)rRNA-binding domain blocked conversion of the 27SB precursor to 5.8S/25S rRNA, confirming that assembly of L25 is essential for ITS2 processing. However, mutations in either the N- or the C-terminal domain of L25, which only marginally affect its ability to bind to (pre-)rRNA, also resulted in defective ITS2 processing. Furthermore, in all cases there was a notable reduction in the efficiency of processing at the early cleavage sites A0, A1 and A2. We conclude that the assembly of L25 is necessary but not sufficient for removal of ITS2, as well as for fully efficient cleavage at the early sites. Additional elements located in the N- as well as C-terminal domains of L25 are required for both aspects of pre-rRNA processing.  相似文献   

6.
The complete primary structures of proteins L17, L27 and S9 extracted from the Bacillus stearothermophilus ribosomes with 1 M NaCl and purified to homogeneity by column chromatography have been determined. The amino acid sequences of these proteins are compared to those of the homologous ribosomal proteins from Escherichia coli. The number of identical amino acid residues between the homologous proteins lies between 33-55%.  相似文献   

7.
NSR1 is a yeast nuclear localization sequence-binding protein showing striking similarity in its domain structure to nucleolin. Cells lacking NSR1 are viable but have a severe growth defect. We show here that NSR1, like nucleolin, is involved in ribosome biogenesis. The nsr1 mutant is deficient in pre-rRNA processing such that the initial 35S pre-rRNA processing is blocked and 20S pre-rRNA is nearly absent. The reduced amount of 20S pre-rRNA leads to a shortage of 18S rRNA and is reflected in a change in the distribution of 60S and 40S ribosomal subunits; there is no free pool of 40S subunits, and the free pool of 60S subunits is greatly increased in size. The lack of free 40S subunits or the improper assembly of these subunits causes the nsr1 mutant to show sensitivity to the antibiotic paromomycin, which affects protein translation, at concentrations that do not affect the growth of the wild-type strain. Our data support the idea that NSR1 is involved in the proper assembly of pre-rRNA particles, possibly by bringing rRNA and ribosomal proteins together by virtue of its nuclear localization sequence-binding domain and multiple RNA recognition motifs. Alternatively, NSR1 may also act to regulate the nuclear entry of ribosomal proteins required for proper assembly of pre-rRNA particles.  相似文献   

8.
Depletion of any of the essential Lsm proteins, Lsm2-5p or Lsm8p, delayed pre-rRNA processing and led to the accumulation of many aberrant processing intermediates, indicating that an Lsm complex is required to maintain the normally strict order of processing events. In addition, high levels of degradation products derived from both precursors and mature rRNAs accumulated in Lsm-depleted strains. Depletion of the essential Lsm proteins reduced the apparent processivity of both 5' and 3' exonuclease activities involved in 5.8S rRNA processing, and the degradation intermediates that accumulated were consistent with inefficient 5' and 3' degradation. Many, but not all, pre-rRNA species could be coprecipitated with tagged Lsm3p, but not with tagged Lsm1p or non-tagged control strains, suggesting their direct interaction with an Lsm2-8p complex. We propose that Lsm proteins facilitate RNA protein interactions and structural changes required during ribosomal subunit assembly.  相似文献   

9.
Ribosome-associated protein biogenesis factors (RPBs) act during a short but critical period of protein biogenesis. The action of RPBs starts as soon as a nascent polypeptide becomes accessible from the outside of the ribosome and ends upon termination of translation. In yeast, RPBs include the chaperones Ssb1/2 and ribosome-associated complex, signal recognition particle, nascent polypeptide-associated complex (NAC), the aminopeptidases Map1 and Map2, and the Nalpha-terminal acetyltransferase NatA. Here, we provide the first comprehensive analysis of RPB binding at the yeast ribosomal tunnel exit as a function of translational status and polypeptide sequence. We measured the ratios of RPBs to ribosomes in yeast cells and determined RPB occupation of translating and non-translating ribosomes. The combined results imply a requirement for dynamic and coordinated interactions at the tunnel exit. Exclusively, NAC was associated with the majority of ribosomes regardless of their translational status. All other RPBs occupied only ribosomal subpopulations, binding with increased apparent affinity to randomly translating ribosomes as compared with non-translating ones. Analysis of RPB interaction with homogenous ribosome populations engaged in the translation of specific nascent polypeptides revealed that the affinities of Ssb1/2, NAC, and, as expected, signal recognition particle, were influenced by the amino acid sequence of the nascent polypeptide. Complementary cross-linking data suggest that not only affinity of RPBs to the ribosome but also positioning can be influenced in a nascent polypeptide-dependent manner.  相似文献   

10.
The proteins of the large subunit of rat liver ribosomes were separated into seven groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Seventeen proteins (L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39) were isolated from three of the groups (B60, D60, G60) by ion exchange chromatography on carboxymethylcellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.5 to 15 mg. Eight of the proteins (L9, L11, L13, L21, L22, L35', L37 and L39) had no detectable contamination; the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.  相似文献   

11.
The sequence of the amino-terminal region of eleven rat liver ribosomal proteins–S4, S6, S8, L7a, L18, L27, L30, L37a, and L39 - was determined. The analysis confirmed the homogeneity of the proteins and suggests that they are unique, since no extensive common sequences were found. The N-terminal regions of the rat liver proteins were compared with amino acid sequences in Saccharomyces cerevisiae and in Escherichia coli ribosomal proteins. It seems likely that the proteins L37 from rat liver and Y55 from yeast ribosomes are homologous. It is possible that rat liver L7a or L37a or both are related to S cerevisiae Y44, although the similar sequences are at the amino-terminus of the rat liver proteins and in an internal region of Y44. A number of similarities in the sequences of rat liver and E coli ribosomal proteins have been found; however, it is not yet possible to say whether they connote a common ancestry.  相似文献   

12.
Ribosomal proteins L4 and L22 both have a globular domain that sits on the surface of the large ribosomal subunit and an extended loop that penetrates its core. The tips of both loops contribute to the lining of the peptide exit tunnel and have been implicated in a gating mechanism that might regulate the exit of nascent peptides. Also, the extensions of L4 and L22 contact multiple domains of 23S rRNA, suggesting they might facilitate rRNA folding during ribosome assembly. To learn more about the roles of these extensions, we constructed derivatives of both proteins that lack most of their extended loops. Our analysis of ribosomes carrying L4 or L22 deletion proteins did not detect any significant difference in their sedimentation property or polysome distribution. Also, the role of L4 in autogenous control was not affected. We conclude that these extensions are not required for ribosome assembly or for L4-mediated autogenous control of the S10 operon.  相似文献   

13.
Ribosome biogenesis is a conserved process in eukaryotes that requires a large number of small nucleolar RNAs and trans-acting proteins. The Saccharomyces cerevisiae MRD1 (multiple RNA-binding domain) gene encodes a novel protein that contains five consensus RNA-binding domains. Mrd1p is essential for viability. Mrd1p partially co-localizes with the nucleolar protein Nop1p. Depletion of Mrd1p leads to a selective reduction of 18 S rRNA and 40 S ribosomal subunits. Mrd1p associates with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs and is necessary for the initial processing at the A(0)-A(2) cleavage sites in pre-rRNA. The presence of five RNA-binding domains in Mrd1p suggests that Mrd1p may function to correctly fold pre-rRNA, a requisite for proper cleavage. Sequence comparisons suggest that Mrd1p homologues exist in all eukaryotes.  相似文献   

14.
Saccharomyces cerevisiae Rrs1p is a nuclear protein that is essential for the maturation of 25 S rRNA and the 60 S ribosomal subunit assembly. In two-hybrid screening, using RRS1 as bait, we have cloned YKR081c/RPF2. Rpf2p is essential for growth and is mainly localized in the nucleolus. The amino acid sequence of Rpf2p is highly conserved in eukaryotes from yeast to human. Similar to Rrs1p, Rpf2p shows physical interaction with ribosomal protein L11 and appears to associate with preribosomal subunits fairly tightly. Northern, methionine pulse-chase, and sucrose density gradient ultracentrifugation analyses reveal that the depletion of Rpf2p results in a delayed processing of pre-rRNA, a decrease of mature 25 S rRNA, and a shortage of 60 S subunits. An analysis of processing intermediates by primer extension shows that the Rpf2p depletion leads to an accumulation of 27 SB pre-rRNA, suggesting that Rpf2p is required for the processing of 27 SB into 25 S rRNA.  相似文献   

15.
Mutants with alterations in the structural genes for ribosomal proteins S15, L21, and L27 were used in mapping the genes coding for these proteins. Results from P1kc-mediated transductions indicate that the genes for L21 (rplU) and L27 (rpmA) form a gene cluster and are located between argG and gltB at 68.1 min, whereas the gene for S15 (rpsO) is situated close to, but on the opposite side or, argG. The gene order in this region is concluded to be gltB-(rplU, rpmA)-argG-rpsO-mtr.  相似文献   

16.
17.
Mechanisms regulating masculinization of the zebra finch song system are unclear; both estradiol and sex‐specific genes may be important. This study was designed to investigate relationships between estrogen and ribosomal proteins (RPL17 and RPL37; sex‐linked genes) that exhibit greater expression in song control nuclei in juvenile males than females. Four studies on zebra finches were conducted using bromodeoxyuridine (BrdU) injections on posthatching days 6–10 with immunohistochemistry for the ribosomal proteins and the neuronal marker HuC/D at day 25. Volumes of brain regions were also assessed in Nissl‐stained tissue. Most BrdU+ cells expressed RPL17 and RPL37. The density and percentage of cells co‐expressing BrdU and HuC/D was greatest in Area X. The density of BrdU+ cells in Area X (or its equivalent) and the percentage of these cells that were neurons were greater in males than females. In RA and HVC, total BrdU+ cells were increased in males. A variety of effects of estradiol were also detected, including inducing an Area X in females with a masculine total number of BrdU+ cells, and increasing the volume and percentage of new neurons in the HVC of females. The same manipulation in males decreased the density of BrdU+ cells in Area X, total number of BrdU+ cells in RA, and density of new neurons in HVC and RA. These data are consistent with the idea that RPL17, RPL37, and estradiol might all influence sexual differentiation, perhaps with the hormone and proteins interacting, such that an appropriate balance is required for normal development. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

18.
In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form large and intriguingly organized complexes. A novel nucleolar protein, Nop53p, was isolated by using Nop17p as bait in the yeast two-hybrid system. Nop53p also interacts with a second nucleolar protein, Nip7p. A carbon source-conditional strain with the NOP53 coding sequence under the control of the GAL1 promoter did not grow in glucose-containing medium, showing the phenotype of an essential gene. Under nonpermissive conditions, the conditional mutant strain showed rRNA biosynthesis defects, leading to an accumulation of the 27S and 7S pre-rRNAs and depletion of the mature 25S and 5.8S mature rRNAs. Nop53p did not interact with any of the exosome subunits in the yeast two-hybrid system, but its depletion affects the exosome function. In pull-down assays, protein A-tagged Nop53p coprecipitated the 27S and 7S pre-rRNAs, and His-Nop53p also bound directly 5.8S rRNA in vitro, which is consistent with a role for Nop53p in pre-rRNA processing.  相似文献   

19.
20.
A mutant of Escherichia coli has been isolated which lacked ribosomal proteins S17 and L29, as judged by two-dimensional gel electrophoresis. A battery of immunological tests was used to confirm this result. Ribosomes of this mutant were used as a control for the localization of proteins S17 and L29 on the surface of the ribosomal subunits of E. coli. Protein S17 has been localized on the 30S subunit body, 3-5 nm away from the lower pole, while protein L29 is located at the back of the 50S particle on the opposite side to the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号