首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term endurance-trained subjects are known to have an enhanced capacity to secrete epinephrine. It is, however, unknown to what extent this is a reversible phenomenon, i.e., whether the adrenal medullary secretory capacity is diminished during a period of abstinence from training. Hormonal responses to insulin-induced hypoglycemia were studied in seven endurance-trained young male athletes at the onset and the termination of a 31- to 44-day period of detraining necessitated by a sports injury that required leg casting. During insulin infusion, plasma glucose decreased to a mean range of 2.0-2.1 mM for the two conditions. The epinephrine response to hypoglycemia did not decrease significantly during the 4-6 wk of detraining (P greater than 0.05). Responses of other counterregulatory hormones, i.e., norepinephrine, glucagon, growth hormone, and cortisol, were identical in trained and detrained subjects (P greater than 0.05). Heart rate and blood pressure responses to hypoglycemia were similar in the two conditions (P greater than 0.05). In conclusion, in endurance athletes the enhanced capacity to secrete epinephrine is maintained during 5 wk of detraining.  相似文献   

2.
3.
This study reports on the major source of circulating norepinephrine that is known to increase, progressively, during sustained hypoglycemia induced by intravenous insulin administration. Plasma concentrations of epinephrine, norepinephrine, and dopamine were simultaneously determined for adrenal venous and aortic blood in dogs anesthetized with sodium pentobarbital. The model used allowed us to perform a functional adrenalectomy (ADRX), while continuously monitoring the adrenal medullary secretory function. Under basal conditions, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine were 0.169 +/- 0.074, 0.067 +/- 0.023, and 0.011 +/- 0.003, respectively. Plasma concentrations (ng/mL) of aortic epinephrine, norepinephrine, and dopamine were 0.132 +/- 0.047, 0.268 +/- 0.034, and 0.034 +/- 0.009. Following insulin injection (0.15 IU/kg, i.v.), the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased gradually (p less than 0.05), reaching the values of 0.918 +/- 0.200, 0.365 +/- 0.058, and 0.034 +/- 0.007 30 min after insulin administration. Similarly, aortic epinephrine, norepinephrine, and dopamine concentrations (ng/mL) increased significantly (p less than 0.05) to 0.702 +/- 0.144, 0.526 +/- 0.093, and 0.066 +/- 0.024. The aortic glucose concentration (mg/dL) was diminished from 81.8 +/- 4.1 to 36.9 +/- 3.4 (p less than 0.01). After taking the blood sample at 30 min following insulin administration, ADRX was immediately performed. Five minutes after the onset of ADRX, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased further to 1.707 +/- 0.374 (p less than 0.05), 0.668 +/- 0.139 (p less than 0.05), and 0.052 +/- 0.017.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Tantucci, C., P. Bottini, M. L. Dottorini, E. Puxeddu, G. Casucci, L. Scionti, and C. A. Sorbini. Ventilatory response toexercise in diabetic subjects with autonomic neuropathy.J. Appl. Physiol. 81(5):1978-1986, 1996.We have used diabetic autonomic neuropathy as amodel of chronic pulmonary denervation to study the ventilatoryresponse to incremental exercise in 20 diabetic subjects, 10 with(Dan+) and 10 without (Dan) autonomic dysfunction, and in 10 normal control subjects. Although both Dan+ and Dan subjectsachieved lower O2 consumption andCO2 production(CO2) thancontrol subjects at peak of exercise, they attained similar values ofeither minute ventilation(E) oradjusted ventilation (E/maximalvoluntary ventilation). The increment of respiratory rate withincreasing adjusted ventilation was much higher in Dan+ than inDan and control subjects (P < 0.05). The slope of the linearE/CO2relationship was 0.032 ± 0.002, 0.027 ± 0.001 (P < 0.05), and 0.025 ± 0.001 (P < 0.001) ml/min inDan+, Dan, and control subjects, respectively. Bothneuromuscular and ventilatory outputs in relation to increasingCO2 were progressivelyhigher in Dan+ than in Dan and control subjects. At peak ofexercise, end-tidal PCO2 was muchlower in Dan+ (35.9 ± 1.6 Torr) than in Dan (42.1 ± 1.7 Torr; P < 0.02) and control (42.1 ± 0.9 Torr; P < 0.005) subjects.We conclude that pulmonary autonomic denervation affects ventilatoryresponse to stressful exercise by excessively increasing respiratoryrate and alveolar ventilation. Reduced neural inhibitory modulationfrom sympathetic pulmonary afferents and/or increasedchemosensitivity may be responsible for the higher inspiratoryoutput.

  相似文献   

5.
This study was conducted to test the hypothesis of the activation of glucose-6-phosphatase (G-6-Pase) in situations where the liver is supposed to sustain high glucose supply, such as during the counterregulatory response to hypoglycemia. Hypoglycemia was induced by insulin infusion in anesthetized rats. Despite hyperinsulinemia, endogenous glucose production (EGP), assessed by [3-(3)H]glucose tracer dilution, was paradoxically not suppressed in hypoglycemic rats. G-6-Pase activity, assayed in a freeze-clamped liver lobe, was increased by 30% in hypoglycemia (P < 0.01 vs. saline-infused controls). Infusion of epinephrine (1 microg x kg(-1) x min(-1)) in normal rats induced a dramatic 80% increase in EGP and a 60% increase in G-6-Pase activity. In contrast, infusion of dexamethasone had no effect on these parameters. Similar insulin-induced hypoglycemia experiments performed in adrenalectomized rats did not induce any stimulation of G-6-Pase. Infusion of epinephrine in adrenalectomized rats restored a stimulation of G-6-Pase similar to that triggered by hypoglycemia in normal rats. These results strongly suggest that specific activatory mechanisms of G-6-Pase take place and contribute to EGP in situations where the latter is supposed to be sustained.  相似文献   

6.
7.
To test whether hepatic insulin action and the response to an insulin-induced decrement in blood glucose are enhanced in the immediate postexercise state as they are during exercise, dogs had sampling (artery, portal vein, and hepatic vein) catheters and flow probes (portal vein and hepatic artery) implanted 16 days before a study. After 150 min of moderate treadmill exercise or rest, dogs were studied during a 150-min hyperinsulinemic (1 mU.kg(-1).min(-1)) euglycemic (n = 5 exercised and n = 9 sedentary) or hypoglycemic (65 mg/dl; n = 8 exercised and n = 9 sedentary) clamp. Net hepatic glucose output (NHGO) and endogenous glucose appearance (R(a)) and utilization (R(d)) were assessed with arteriovenous and isotopic ([3-(3)H]glucose) methods. Results show that, immediately after prolonged, moderate exercise, in relation to sedentary controls: 1) the glucose infusion rate required to maintain euglycemia, but not hypoglycemia, was higher; 2) R(d) was greater under euglycemic, but not hypoglycemic conditions; 3) NHGO, but not R(a), was suppressed more by a hyperinsulinemic euglycemic clamp, suggesting that hepatic glucose uptake was increased; 4) a decrement in glucose completely reversed the enhanced suppression of NHGO by insulin that followed exercise; and 5) arterial glucagon and cortisol were transiently higher in the presence of a decrement in glucose. In summary, an increase in insulin action that was readily evident under euglycemic conditions after exercise was abolished by moderate hypoglycemia. The means by which the glucoregulatory system is able to overcome the increase in insulin action during moderate hypoglycemia is related not to an increase in R(a) but to a reduction in insulin-stimulated R(d). The primary site of this reduction is the liver.  相似文献   

8.
Changes in body fluid distribution are known to influence neuroendocrine function. The aim of the present study was to test the hypothesis that changes in plasma volume affect the counterregulatory neuroendocrine response to hypoglycemia. The tests were performed in 12 subjects in two situations: 'head-up' (+60 degrees head-up tilt standing for 30 min and hypoglycemia in sitting position afterwards) and 'leg-up' (leg-up position for 30 min and hypoglycemia in leg-up position afterwards) in a random order. Insulin-induced hypoglycemia was adjusted to 2.7 mmol/l for 15 min by glucose infusion. Plasma volume was greater by 2.2% (p < 0.001) in leg-up and lower by 9.6% (p < 0.001) in head-up position compared to the basal value in sitting position. Head-up position was associated with increases in ACTH, aldosterone, norepinephrine levels and plasma renin activity (p < 0.01). Leg-up position resulted in decreases in plasma growth hormone and epinephrine concentrations (p < 0.05). Except epinephrine, the neuroendocrine response to hypoglycemia, if any, was mild. Hypoglycemia failed to activate ACTH release after head-up position. Body fluid redistribution did not modify hormonal changes during insulin hypoglycemia. In conclusion, we suggest that body position and accompanying plasma volume changes do not appear to affect neuroendocrine and counterregulatory responses to moderate, short duration hypoglycemia in healthy subjects.  相似文献   

9.
Changes in plasmatic levels and retinal content of somatostatin after insulin-induced hypoglycemia were investigated in three different groups of animals: Control group (C), Diabetic untreated group (D); and, Insulin-treated diabetic group (DI). In addition, another group of animals, not submitted to hypoglycemia, was used as control reference of retinal prehypoglycemic content of somatostatin (group B). Plasmatic basal levels of somatostatin were slightly higher in group DI, and significantly higher in group C, whereas they did not show any differences in group D and DI after hypoglycemia, being significantly higher in group C. The somatostatin retinal content is similar in animals not subjected to hypoglycemia and in the C and DI groups after hypoglycemia, where the rats of the D groups showed significantly higher values than the remainder of the experimental groups, an effect that is also evident in nontreated diabetic animals, even if they are not subjected to hypoglycemia, Summing up, the plasmatic somatostatin response to insulin-induced hypoglycemia is impaired in diabetic rats. Retinal somatostatin content is unchanged after hypoglycemia.  相似文献   

10.
The impact of pregnancy on the counterregulatory response to insulin-induced hypoglycemia was examined in six nonpregnant (NP) and six pregnant (P; 3rd trimester) conscious dogs by tracer and arteriovenous difference techniques. After basal sampling, insulin was infused intraportally at 30 pmol.kg(-1).min(-1) for 180 min. Insulin rose from 70 +/- 15 to 1,586 +/- 221 pmol/l and 27 +/- 4 to 1,247 +/- 61 pmol/l in the 3rd h in NP and P, respectively. Arterial glucose fell from 5.9 +/- 0.2 to 2.3 +/- 0.2 mmol/l in P. Glucose was infused in NP to equate the rate of fall of glucose and the steady-state concentrations in the groups (5.9 +/- 0.2 to 2.3 +/- 0.1 mmol/l in NP). Glucagon was 32 +/- 6, 69 +/- 11, and 48 +/- 10 ng/l (basal and 1st and 3rd h) in NP, but the response was attenuated in P (34 +/- 5, 46 +/- 6, 41 +/- 9 ng/l). Cortisol and epinephrine rose similarly in both groups, but norepinephrine rose more in NP (Delta3.01 +/- 0.46 and Delta1.31 +/- 0.13 nmol/l, P < 0.05). Net hepatic glucose output (NHGO; micromol.kg(-1).min(-1)) increased from 10.6 +/- 1.8 to 21.2 +/- 3.3 in NP (3rd h) but did not increase in P (15.1 +/- 1.5 to 15.3 +/- 2.8 micromol.kg(-1).min(-1), P < 0.05 between groups). The glycogenolytic contribution to NHGO in NP increased from 5.8 +/- 0.7 to 10.4 +/- 2.5 micromol.kg(-1).min(-1) by 90 min but steadily declined in P. The increase in glycerol levels and the gluconeogenic contribution to NHGO were 50% less in P than in NP, but ketogenesis did not differ. The glucagon and norepinephrine responses to insulin-induced hypoglycemia are blunted in late pregnancy in the dog, impacting on the magnitude of the metabolic responses to the fall in glucose.  相似文献   

11.
Insulin-induced hypoglycemia occurs commonly in intensively treated patients with type 1 diabetes, but the cardiovascular consequences of hypoglycemia in these patients are not known. We studied left ventricular systolic [left ventricular ejection fraction (LVEF)] and diastolic [peak filling rate (PFR)] function by equilibrium radionuclide angiography during insulin infusion (12 pmol. kg(-1). min(-1)) under either hypoglycemic (approximately 2.8 mmol/l) or euglycemic (approximately 5 mmol/l) conditions in intensively treated patients with type 1 diabetes and healthy nondiabetic subjects (n = 9 for each). During hypoglycemic hyperinsulinemia, there were significant increases in LVEF (DeltaLVEF = 11 +/- 2%) and PFR [DeltaPFR = 0.88 +/- 0.18 end diastolic volume (EDV)/s] in diabetic subjects as well as in the nondiabetic group (DeltaLVEF = 13 +/- 2%; DeltaPFR = 0.79 +/- 0.17 EDV/s). The increases in LVEF and PFR were comparable overall but occurred earlier in the nondiabetic group. A blunted increase in plasma catecholamine, cortisol, and glucagon concentrations occurred in response to hypoglycemia in the diabetic subjects. During euglycemic hyperinsulinemia, LVEF also increased in both the diabetic (DeltaLVEF = 7 +/- 1%) and nondiabetic (DeltaLVEF = 4 +/- 2%) groups, but PFR increased only in the diabetic group. In the comparison of the responses to hypoglycemic and euglycemic hyperinsulinemia, only the nondiabetic group had greater augmentation of LVEF, PFR, and cardiac output in the hypoglycemic study (P < 0.05 for each). Thus intensively treated type 1 diabetic patients demonstrate delayed augmentation of ventricular function during moderate insulin-induced hypoglycemia. Although diabetic subjects have a more pronounced cardiac response to hyperinsulinemia per se than nondiabetic subjects, their response to hypoglycemia is blunted.  相似文献   

12.
Rats that develop diet-induced obesity (DIO) on a 31% fat [high-energy (HE)] diet have defective sensing and responding to altered glucose levels compared with diet-resistant (DR) rats. Thus we postulated that they would also have defective counterregulatory responses (CRR) to insulin-induced hypoglycemia (IIH). Chow-fed selectively bred DIO and DR rats underwent three sequential 60-min bouts of IIH separated by 48 h. Glucose levels fell comparably, but DIO rats had 22-29% lower plasma epinephrine (Epi) levels during the first two bouts than DR rats. By the third trial, despite comparable Epi levels, DIO rats had lower 30-min glucose levels and rebounded less than DR rats 85 min after intravenous glucose. Although DIO rats gained more carcass and fat weight after 4 wk on an HE diet than DR rats, they were unaffected by prior IIH. Compared with controls, DR rats with prior IIH and HE diet had higher arcuate nucleus neuropeptide Y (50%) and proopiomelanocortin (POMC; 37%) mRNA and an inverse correlation (r = 0.85; P = 0.004) between POMC expression and body weight gain on the HE diet. These data suggest that DIO rats have a preexisting defect in their CRR to IIH but that IIH does not affect the expression of their hypothalamic neuropeptides or weight gain as it does in DR rats.  相似文献   

13.
Pupillary function was investigated in 36 insulin-dependent diabetics and 36 controls matched for age and sex. About half of the diabetics had evidence of peripheral somatic or autonomic neuropathy, or both. The diabetic patients had abnormally small pupil diameters in the dark and less fluctuation in pupil size (hippus) during continuous illumination than the controls. They also had reduced reflex responses to light flashes of an intensity adjusted for individual retinal sensitivities. The pupillary findings were compared with results of five tests of cardiovascular function and five tests of peripheral sensory and motor nerve function. Almost all the patients with autonomic neuropathy had pupillary signs, which we therefore conclude are a common manifestation of diabetic autonomic neuropathy.  相似文献   

14.
IntroductionPlasma vascular endothelial growth factor (VEGF) was shown to increase during acute hypoglycemia and could mediate rapid adaptation of the brain. In this study we examined the neuroendocrine response in patients with type 2 diabetes mellitus (T2DM) in hypoglycemic coma or with acute neuroglycopenic symptoms.MethodsWe prospectively studied 135 consecutive T2DM patients admitted for severe hypoglycemia during a 2-year period. We collected clinical variables and measured plasma concentrations of VEGF, epinephrine, norepinephrine, cortisol and growth hormone at admission and 30 min afterwards.ResultsThirty two patients developed hypoglycemic coma and 103 did not lose consciousness. Median plasma VEGF level of coma patients was 3.1-fold lower at baseline than that of non-coma patients, and even 5.3-fold lower 30 min afterwards. Plasma epinephrine concentration was significantly lower just at baseline in coma patients. On the contrary, there were no differences in concentrations of the other hormones. Multivariate logistic regression analysis showed that VEGF concentration (OR 0.68; CI 0.51–0.95) was a protective factor against the development of coma.ConclusionsVEGF and epinephrine responses to acute hypoglycemia are reduced in T2DM patients who develop hypoglycemic coma. An increased plasma VEGF concentration appeared to be a protective factor against the development of hypoglycemic coma.  相似文献   

15.
16.
17.
Our aim was to determine whether complete hepatic denervation would affect the hormonal response to insulin-induced hypoglycemia in dogs. Two weeks before study, dogs underwent either hepatic denervation (DN) or sham denervation (CONT). In addition, all dogs had hollow steel coils placed around their vagus nerves. The CONT dogs were used for a single study in which their coils were perfused with 37 degrees C ethanol. The DN dogs were used for two studies in a random manner, one in which their coils were perfused with -20 degrees C ethanol (DN + COOL) and one in which they were perfused with 37 degrees C ethanol (DN). Insulin was infused to create hypoglycemia (51 +/- 3 mg/dl). In response to hypoglycemia in CONT, glucagon, cortisol, epinephrine, norepinephrine, pancreatic polypeptide, glycerol, and hepatic glucose production increased significantly. DN alone had no inhibitory effect on any hormonal or metabolic counterregulatory response to hypoglycemia. Likewise, DN in combination with vagal cooling also had no inhibitory effect on any counterregulatory response except to reduce the arterial plasma pancreatic polypeptide response. These data suggest that afferent signaling from the liver is not required for the normal counterregulatory response to insulin-induced hypoglycemia.  相似文献   

18.
19.
20.
Adaptation to microgravity is associated with alteration in some endocrine functions. In the present longitudinal study, the counterregulatory hormonal response to insulin-induced hypoglycemia (ITT, 0.1 IU/kg short acting insulin i. v.) was evaluated under simulated microgravity conditions in 15 physically fit subjects. ITT was performed at the beginning of the investigation, and again after completion of 6 weeks of endurance training and after a subsequent period of 4 days of head-down bed rest at a backward tilt of 6 degrees from the horizontal. Endurance training showed a significant increase in maximal aerobic capacity in previously well-trained subjects (increase by 12 %), as well as on attenuation of counterregulatory response of epinephrine to hypoglycemia. After 4 days of bed rest, basal concentrations of plasma norepinephrine was diminished (p < 0.002) and plasma renin activity was enhanced (p < 0.02). After bed rest, decreased responses of the two catecholamines (norepinephrine, p < 0.001; epinephrine, p < 0.001), growth hormone (p < 0.001), and cortisol (p < 0.05) were observed. Response of plasma renin activity after bed rest was increased (p < 0.01). This longitudinal study indicated that 4 days of bed rest in endurance-trained subjects induced increased response of PRA to hypoglycemia and attenuation of other counterregulatory neuroendocrine responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号