首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eyespot disease of sugarcane is caused by Helminthosporium sacchari. Helminthosporoside, a host-specific toxin produced by H. sacchari, is essential for the pathogenicity of this fungus. The presence of the helminthosporoside-binding protein in sugarcane likewise appears to be essential for susceptibility to the toxin. The results of this report show that leaf cell protoplasts of tobacco and toxin resistant sugarcane effectively adsorbed the toxin-binding protein derived from membranes of susceptible sugarcane. These protoplasts then became susceptible to the helminthosporoside. They also functioned to takeup raffinose, a trisaccharide structurally related to the toxin. Tobacco protoplasts were treated with [14C] - binding protein, ruptured, and fractionated on a sucrose density gradient column. A peak of radioactivity was associated with the enriched plasma membrane fraction. The results support the hypothesis that the binding protein is the primary recognition site governing susceptibility of sugarcane to helminthosporoside.  相似文献   

2.
Helminthosporium sacchari toxin and several lower molecular weight, nontoxic analogs were isolated from culture filtrates. Three isomers of the toxin (A, B, and C), each with four galactose units, were separated by high performance liquid chromatography. Isomer C had the highest and isomer A had the lowest toxicity to H. sacchari-susceptible sugarcane; resistant clones were not affected. Each toxin isomer was partially digested with a β-galactofuranosidase and the resulting analogs (seven from each toxin isomer) were separated by reverse phase high performance liquid chromatography and identified. Each isomer of the analogs with 3 galactose units per mole also was partially digested and the arrangement of galactose units was determined. The compound with one galactose attached to position 2 of the bicyclic sesquiterpene and with 2 galactose units attached to position 13 (analog A1,2) was highly toxic to some but not to all clones of H. sacchari-susceptible sugarcane. Toxin analogs protected sensitive tissue against active toxin; protective effects of the analogs differed, but at least a 10-fold excess of analog was required. Analog C2,1 was more effective at preventing toxin C-induced electrolyte losses than was any other analog. Each of the 3-galactose analog isomers protected better than did any of the 2-galactose compounds. The 1,1 analogs did not protect as well as did the 2,0 or 0,2 analogs. Thus, the sesquiterpene isomer, the number of galactose units, and the galactose arrangement pattern determine the effectiveness of the compound in induction of electrolyte loss and in prevention of toxininduced loss from sugarcane tissues.  相似文献   

3.
《Phytochemistry》1987,26(6):1607-1611
Helminthosporium sacchari, a fungus that causes disease in sugarcane, produces oligosaccharide-sesquiterpene toxins (HS toxins A, B, and C) that are required for infection and disease development. Two free sesquiterpenes were isolated from mycelium but not from culture fluids of the fungus. One sesquiterpene was identified by HPLC and mass spectrometry as an aglycone of HS toxin C and could be obtained by enzymatic hydrolysis of this toxin. The other sesquiterpene appeared to be the 2-keto form of the first compound. The aglycone from toxin C hydrolysis was labelled with tritium by successive treatments with active manganese dioxide, sodium boro[3H]hydride, and lithium aluminium hydride. The labelled compound was fed to cultures of H. sacchari, radioactivity was incorporated into HS toxin C and into lower molecular weight homologues. The results suggest a metabolic route (aglycone → metabolite Y, → HS toxin → metabolite X) for the biosynthesis of HS toxin; metabolites X and Y are lower molecular weight homologues of the toxin.  相似文献   

4.
A novel compound, serinol phosphate, was identified in sugarcane (Saccharum officinarum) clone 51NG97. It was produced by an enzyme-mediated transamination of dihydroxyacetone phosphate with either alanine, glutamate, aspartate, or glutamine serving equally well as an amino donor. Some detectable phosphatase activity was present in crude leaf enzyme preparation that hydrolyzed serinol phosphate. A proposal for a pathway of the biosynthesis of serinol in sugarcane was formulated.

Serinol can serve as an “activator” of toxin production in attenuated cultures of the sugarcane pathogen Helminthosporium sacchari and it is present in susceptible clone 51NG97. Resistant clone H50-7209 does not possess serinol and likewise no dihydroxyacetone phosphate transaminase activity could be demonstrated in enzyme preparations of this clone. The concept of toxin activation in attenuated fungus cultures is briefly discussed relative to disease resistance and susceptibility.

  相似文献   

5.
The relatively low numbers and sporadic pattern of incidence of the acetic acid bacterium Gluconacetobacter sacchari with the pink sugarcane mealybug (PSMB) Saccharicoccus sacchariCockerell (Homoptera: Pseudococcidae) over time and from different sugarcane-growing regions do not indicate that Glac. sacchari is a significant commensal of the PSMB, as has been previously proposed. This study was conducted to investigate the hypothesis that Glac. sacchari is, like its closest relative Glac. diazotrophicus, an endophyte of sugarcane (Saccharum officinarum L.). In this study, bothGlac. sacchari and Glac. diazotrophicus were isolated from internal sugarcane tissue, although the detection of both species was sporadic in all sugarcane-growing regions of Queensland tested. To confirm the ability of Glac. sacchari to live endophytically, an experiment was conducted in which the roots of micropropagated sugarcane plantlets were inoculated with Glac. sacchari, and the plantlets were subsequently examined for the presence of the bacterium in the stem cells. Pure cultures of Glac. sacchari were grown from homogenized surface sterilized sugarcane stems inoculated withGlac. sacchari.Electron microscopy was used to provide further conclusive evidence that Glac. sacchari lives as an endophyte in sugarcane. Scanning electron microscopy of (SEM) sugarcane plantlet stems revealed rod-shaped cells of Glac. sacchari within a transverse section of the plantlet stem cells. The numbers of bacterial cells inside the plant cell indicated a successful infection and colonization of the plant tissue. Using transmission electron microscopy, (TEM) bacterial cells were more difficult to find, due to their spatial separation. In our study, bacteria were mostly found singularly, or in groups of up to four cells inside intercellular spaces, although bacterial cells were occasionally found inside other cells.  相似文献   

6.

Key message

A combination of in vitro culture and mutagenesis using ethyl methanesulfonate (EMS) followed by culture filtrate-mediated selection produced variant sugarcane plants tolerant and resistant to Fusarium sacchari.

Abstract

Eldana saccharina is a destructive pest of the sugarcane crop in South Africa. Fusarium sacchari PNG40 (a fungal strain harmful to E. saccharina) has the potential to be an endophytic biological control agent of the stalk borer. However, the fungus causes Fusarium stalk rot in sugarcane. In the current study, sugarcane plants tolerant and resistant to F. sacchari PNG40 were produced by exposing embryogenic calli to the chemical mutagen ethyl methanesulfonate (EMS), followed by in vitro selection during somatic embryogenesis and plantlet regeneration on media containing F. sacchari culture filtrates (CF). The incorporation of 100 ppm CF in the culture media at the embryo maturation stage, at germination, or at both, resulted in callus necrosis and consequent reduced plantlet yield. Subsequent trimming of the roots of regenerated plants and their exposure to 1,500 ppm CF served as a further selection treatment. Plants produced from EMS-treated calli displayed improved root re-growth in the presence of CF pressure compared with those from non-treated calli. The tolerance of CF-selected plants was confirmed in greenhouse tests by inoculation with F. sacchari PNG40, re-isolation of Fusarium spp. from undamaged tissue of asymptomatic plants and establishment of the identity of fungal isolates as PNG40 using molecular analysis. The restriction of PNG40 presence to the inoculation lesion in some plants suggested their resistance to the fungus. Genotypes exhibiting symptomless endophytic colonization by PNG40 were identified and will be utilised for testing biological control strategies against E. saccharina.  相似文献   

7.
Most aphids are highly specialized on one or two related plant species and generalist species often include sympatric populations adapted to different host plants. Our aim was to test the hypothesis of the existence of host specialized lineages of the aphid Melanaphis sacchari in Reunion Island. To this end, we investigated the genetic diversity of the aphid and its association with host plants by analyzing the effect of wild sorghum Sorghum bicolor subsp. verticilliflorum or sugarcane as host plants on the genetic structuring of populations and by performing laboratory host transfer experiments to detect trade-offs in host use. Genotyping of 31 samples with 10 microsatellite loci enabled identification of 13 multilocus genotypes (MLG). Three of these, Ms11, Ms16 and Ms15, were the most frequent ones. The genetic structure of the populations was linked to the host plants. Ms11 and Ms16 were significantly more frequently observed on sugarcane, while Ms15 was almost exclusively collected in colonies on wild sorghum. Laboratory transfer experiments demonstrated the existence of fitness trade-offs. An Ms11 isofemale lineage performed better on sugarcane than on sorghum, whereas an Ms15 lineage developed very poorly on sugarcane, and two Ms16 lineages showed no significant difference in performances between both hosts. Both field and laboratory results support the existence of host plant specialization in M. sacchari in Reunion Island, despite low genetic differentiation. This study illustrates the ability of asexual aphid lineages to rapidly undergo adaptive changes including shifting from one host plant to another.  相似文献   

8.
Isolates from the Fusarium fujikuroi species complex, mainly F. sacchari, have been reported to be the causal agents of pokkah boeng in sugarcane in Brazil. However, inadequate information was available on the occurrence and genetic diversity of F. sacchari in Northeast Brazil, which is a limiting factor on management. Thus, isolates of F. subglutinans sensu lato from sugarcane plants with symptoms of pokkah boeng were evaluated using the sexual cross-fertility to determine species. All the isolates produced black perithecia when they were crossed with the test isolates of F. sacchari. Three weeks after the crossing, the formation of fertile ascospores cirri was observed. Thirty-four isolates were self-sterile hermaphrodites, while 21 were fertile only as males. Five isolates were homothallic. The effective size [Ne(f)] of the population as a function of the frequency of hermaphrodites and female sterile strains was 95.5%. The F. sacchari isolates were separated into four genetic groups independent of geographic location. The mean of polymorphism among all populations was 79%, and the average unbiased genetic diversity (uh) was considered moderate (0.31). This study in addition to confirming that F. sacchari as the main species associated with pokkah boeng in sugarcane in Northeast Brazil, reveals the relationship of mating type and genetic diversity of F. sacchari. The unrestricted gene flow between regions is probably the best explanation for the low geographic correlation. This knowledge will help in the adoption of management measures with fungicides or resistant cultivars.  相似文献   

9.
Helminthosporium sacchari produces a host-selective toxin and structurally related nontoxic compounds, here referred to as `toxoids.' Toxin and the three toxoids were each isolated to a high level of purity and were hydrolyzed under acidic conditions. The released galactose was measured by a galactose oxidase/peroxidase assay. Toxin was found to contain four units of galactose per molecule, as previously reported. Toxoids I, II, and III contained one, two, and three units of galactose, respectively. In cultures of the fungus, toxin concentration peaked at 3 weeks, followed by a rapid decline; as toxin levels fell, the total amount of toxoids increased. An enzyme with β-galactofuranosidase activity was found in small amounts in the cultures of H. sacchari; the enzyme converted toxin to the toxoids in vitro. β-Galactofuranosidase was previously known from very few micro-organisms; therefore, several pathogenic Helminthosporia and other fungi were tested for production. β-Galactofuranosidase activity in culture filtrates and mycelia of H. victoriae, H. maydis, H. carbonum, and H. turcicum was much greater than in filtrates and mycelium of H. sacchari. More work is needed to determine the significance of enzyme production by these fungi. No β-galactofuranosidase was evident from Fusarium oxysporum and Cladosporium cucumerinum.  相似文献   

10.
Kosakonia sacchari sp. nov. is a new species within the new genus Kosakonia, which was included in the genus Enterobacter. K sacchari is a nitrogen-fixing bacterium named for its association with sugarcane (Saccharum officinarum L.). K sacchari bacteria are Gram-negative, aerobic, non-spore-forming, motile rods. Strain SP1T (=CGMCC1.12102T=LMG 26783T) is the type strain of the K sacchari sp. nov and is able to colonize and fix N2 in association with sugarcane plants, thus promoting plant growth. Here we summarize the features of strain SP1T and describe its complete genome sequence. The genome contains a single chromosome and no plasmids, 4,902,024 nucleotides with 53.7% GC content, 4,460 protein-coding genes and 105 RNA genes including 22 rRNA genes, 82 tRNA genes, and 1 ncRNA gene.Key words : endophyte, Enterobacter, Kosakonia, nitrogen fixation, plant growth-promoting bacteria, sugarcane  相似文献   

11.
This study was aimed to isolate and identify the N2-fixing bacterium Gluconacetobacter diazotrophicus from 11 sugarcane varieties, grown under field conditions in four Cuban provinces, and from their associated mealybugs Saccharicoccus sacchari. Identification was based on morphological and biochemical tests and PCR-amplification of 16S rRNA genes using species-specific primers. From all sugarcane varieties and numerous mealybug colonies sampled, G. diazotrophicus isolates were recovered from inside sugarcane stems of only three varieties, and one from S. sacchari colony. These four isolates showed acetylene reduction activity in nitrogen-free media and contained nifH genes which were PCR-amplified using specific primers. ERIC-PCR fingerprinting was used to compare the Cuban G. diazotrophicus isolates with type and reference strains of N2-fixing Gluconacetobacteria. The very low frequency of G. diazotrophicus isolates recovered is probably related with the high doses of nitrogen fertilizers applied to the sugarcane in the Cuban fields for almost 30 years. Some genetic differences, using ERIC-PCR, were detected among G. diazotrophicus strains, which could be related with its source.  相似文献   

12.
The analysis of sugarcane plants regenerated from culture for their reaction to eyespot (Helminthosporium sacchari) toxin is described. A total of 480 culture-derived plants (somaclones) from cultivar Q101 were characterized. Some of these plants derived from cultures which had been subjected to selection with the eyespot toxin and others were derived without overt selection. Leaves were assayed for their toxin reaction. A very high frequency of toxin-tolerant variants was found. The distribution was even further biased toward resistance in those plants regenerated from cultures exposed to toxin selection.A total of 85 somaclones was analysed for the stability of their increased toxin tolerance to the primary somaclone; 22% were more tolerant; 38% were more susceptible. These results are discussed as they relate to the possibility of using consecutive vegetative segregation.Six tolerant variants were also passed through a second tissue culture cycle and 60 secondary somaclones were assayed. Twenty four (40%) of these plants had a similar tolerance to the primary somacione; 22% were more tolerant; 38% were more susceptible. These results are discussed as they relative to the possibility of using consecutive cycles of culture to stack improved characters into a sugarcane cultivar.  相似文献   

13.
Despite the versatility and many advantages of polyhydroxyalkanoates as petroleum-based plastic substitutes, their higher production cost compared to petroleum-based polymers has historically limited their large-scale production. One appealing approach to reducing production costs is to employ less expensive, renewable feedstocks. Xylose, for example is an abundant and inexpensive carbon source derived from hemicellulosic residues abundant in agro-industrial waste (sugarcane bagasse hemicellulosic hydrolysates). In this work, the production of poly-3-hydroxybutyrate P(3HB) from xylose was studied to develop technologies for conversion of agro-industrial waste into high-value chemicals and biopolymers. Specifically, this work elucidates the organization of the xylose assimilation operon of Burkholderia sacchari, a non-model bacterium with high capacity for P(3HB) accumulation. Overexpression of endogenous xylose isomerase and xylulokinase genes was successfully assessed, improving both specific growth rate and P(3HB) production. Compared to control strain (harboring pBBR1MCS-2), xylose utilization in the engineered strain was substantially improved with 25% increase in specific growth rate, 34% increase in P(3HB) production, and the highest P(3HB) yield from xylose reported to date for B. sacchari (YP3HB/Xil = 0.35 g/g). This study highlights that xylA and xylB overexpression is an effective strategy to improve xylose utilization and P(3HB) production in B. sacchari.  相似文献   

14.
Numerous studies have examined the genetic diversity and genetic structure of invading species, with contrasting results concerning the relative roles of genetic diversity and phenotypic plasticity in the success of introduced populations. Increasing evidence shows that asexual lineages of aphids are able to occupy a wide geographical and ecological range of habitats despite low genetic diversity. The anholocyclic aphid Melanaphis sacchari is a pest of sugarcane and sorghum which originated in the old world, was introduced into the Americas, and is now distributed worldwide. Our purpose was to assess the genetic diversity and structuring of populations of this species according to host and locality. We used 10 microsatellite markers to genotype 1333 individuals (57 samples, 42 localities, 15 countries) collected mainly on sugarcane or sorghum. Five multilocus lineages (MLL) were defined, grouping multilocus genotypes (MLG) differing by only a few mutations or scoring errors. Analysis of a 658 bp sequence of mitochondrial COI gene on 96 individuals revealed five haplotypes, with a mean divergence of only 0.19 %. The distribution of MLL appeared to be strongly influenced by geography but not by host plant. Each of the five MLL grouped individuals from (A) Africa, (B) Australia, (C) South America, the Caribbean and the Indian Ocean including East Africa, (D) USA, and (E) China. The MLL A and C, with a wide geographic distribution, matched the definition of superclone. Among aphids, M. sacchari has one of the lowest known rates of genetic diversity for such a wide geographical distribution.  相似文献   

15.
Melanaphis sacchari causes serious damage to sorghum (Sorghum bicolor (L.) Moench) growth, development and productivity in many countries. A dominant gene (RMES1) conferring resistance to M. sacchari has been found in the grain sorghum variety Henong 16 (HN16), but fine mapping of the RMES1 locus remains to be reported. In this study, genetic populations segregating for RMES1 were prepared with HN16 and BTx623 as parental lines. The latter had been used for sorghum genome sequencing but was found to be susceptible to M. sacchari in this work. A total of 11 molecular markers were mapped to the short arm of chromosome 6 harboring RMES1. The closest markers flanking the RMES1 locus were Sb6m2650 and Sb6rj2776, which delimited a chromosomal region of about 126 kb containing five predicted genes. The utility of the newly identified DNA markers for tagging RMES1 in molecular breeding of M. sacchari resistance, and further efforts in cloning RMES1, are discussed.  相似文献   

16.
In 2013, an outbreak of Melanaphis sacchari Zehntner (Hemiptera: Aphididae) was reported in sorghum in Texas, USA. Although this aphid has been reported in the continental USA for nearly a century, its occurrence was limited to Florida and Louisiana sugarcane. After 2013 and within just 3 years M. sacchari was reported in almost all sorghum growing regions from south central to southeastern states in the USA. Sorghum fields in affected areas have sustained considerable losses. This aphid has also been reported on Johnsongrass and other feral grasses. The speed at which this aphid has spread raises serious concerns about future infestations. Many aphid species present genetically distinct populations when feeding on different host plants. Thus, it was hypothesized that the recent outbreak in sorghum could be explained by a recent introduction of a sorghum‐specialized genotype. In this study, we genetically characterized M. sacchari in three of its most common host plants – sorghum, sugarcane, and Johnsongrass – across its geographic distribution in the continental USA. Although M. sacchari specimens were grouped within three genetically distinct clusters, we did not find evidence of host plant or geographic population structure. Our characterization of the genetic structure of this pest provides baseline data aimed to help explain its recent outbreak in sorghum, as well as information that may aid in the design of sustainable control strategies.  相似文献   

17.
《Journal of Asia》2020,23(4):901-908
The sugarcane aphid, Melanaphis sacchari, has been a severe pest throughout the sorghum field in Texas, which can worse the sorghum yield economically. For this purpose of early detection, the mechanism of herbivore-induced plant volatiles (HIPVs) needs to be utilized in the detection method. In this study, the HayeSep Q adsorbent combined gas chromatography mass spectrometry (GC/MS) was tested to analyze the volatile organic compounds (VOCs) that sorghum can emit when they are in good shape as well as they are infested by the sugarcane aphids, and multivariate techniques were performed for the fast screening of the infestation. Several VOCs identified from Student’s t-test with p < 0.05 were finally chosen as variables for multivariate analysis, and both unsupervised learning of principal component analysis (PCA) and clustering analysis (CA) and supervised learning of linear discriminant analysis (LDA) were done, showing good performance on discrimination between healthy and infested sorghum.  相似文献   

18.
19.
Abstract

The sugarcane aphid, Melanaphis sacchari (Zehntner), is a major pest in diverse sorghum-growing regions, affecting yields if no effective control measures are implemented. The objective of this study was to evaluate the field efficacy of commercial formulations of biorational insecticides against this pest. All the evaluated biorational insecticides exerted acceptable biological efficacy for at least 7 days after application. The insecticides based on fatty acid potassium salts (Ultralux® S and Impide®) maintained aphid density below the established threshold of 50 aphids per leaf up to 14 days after application. The results obtained suggest that biorational insecticides can be included in the integrated management of M. sacchari.  相似文献   

20.
入侵害虫蔗扁蛾在我国的潜在分布区   总被引:1,自引:0,他引:1  
【目的】蔗扁蛾是危害巴西木、甘蔗等园林植物和经济作物的重要入侵害虫。该虫于20世纪90年代初在我国被发现,现已分布在海南、广东和上海等19个省市,并有迅速扩散蔓延的趋势。对入侵害虫的潜在分布区进行预测,可为实施害虫监测和管理提供参考。【方法】根据蔗扁蛾已有分布点的记录,分别在4种地理区域构建Maxent生态位模型,并采用加权平均值法对其进行整合,进而分析蔗扁蛾在我国的潜在分布区。【结果】基于4种地理区域构建的Maxent模型对我国南部地区的预测结果基本一致,4种模型的预测差异主要在新疆北部和西南部、黑龙江东部和西部、吉林西部、山西中部等地区。整合模型显示,华东和华南地区以及东部沿海地区具有较大的分布可能性。【结论】蔗扁蛾在我国尤其是南方具有较大的潜在分布空间。这些地区应警惕蔗扁蛾的入侵,同时采取应对措施防止其进一步扩散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号