首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With increasing evidence suggesting the involvement of oxidative stress in various disorders and diseases, the role of antioxidants in vivo has received much attention. 2,3-Dihydro-5-hydroxy-2,2-dipentyl-4,6-di- tert -butylbenzofuran (BO-653) was designed, synthesized and has been evaluated as a novel antiatherogenic drug. In order to further understand the action of BO-653 and also radical-scavenging antioxidants in general, the dynamics of inhibition of oxidation by BO-653 were compared with those of the related compounds, 2,3-dihydro-5-hydroxy-2,2-dimethyl-4,6-di- tert -butylbenzofuran (BOB), 2,3-dihydro-5-hydroxy-2,2,4,6-tetramethylbenzofuran (BOM), &#102 -tocopherol and 2,2,5,7,8-pentamethyl-6-chromanol (PMC), aiming specifically at elucidating the effects of substituents and side chain length of the phenolic antioxidants. These five antioxidants exerted substantially the same reactivities toward radicals and antioxidant capacities against lipid peroxidation in organic solution. When compared with di-methyl side chains, the di-pentyl side chains of BO-653 reduced its inter-membrane mobility but exerted less significant effect than the phytyl side chain of &#102 -tocopherol on the efficacy of radical scavenging within the membranes. Di- tert -butyl groups at both ortho-positions made BO-653 and BOB more lipophilic than di-methyl substituents and reduced markedly the reactivity toward Cu(II) and also the synergistic interaction with ascorbate. The results of the present study together with those of the previous work on the effect of substituents on the stabilities of aryloxyl radicals suggest that tert -butyl group is more favorable than methyl group as the substituent at the ortho-positions and that di-pentyl side chains may be superior to a phytyl side chain.  相似文献   

2.
With increasing evidence that shows the involvement of active oxygen and nitrogen species in a variety of disorders, cancer, and aging, the role of antioxidant against oxidative stress has received renewed attention. In this review article, a rationale for design of lipophilic, radical-scavenging antioxidant is presented and the potency of a novel antioxidant, 2,3-dihydro-5-hydroxy-2,2-dipentyl-4, 6-di-tert-butylbenzofuran (BO-653), as an inhibitor of LDL oxidation was evaluated by considering various factors such as reactivity toward radicals, localization, and mobility in the lipoprotein, and fate of its radical. The anti-atherogenic activity of BO-653 was compared with those of alpha-tocopherol, probucol, and its metabolites. Furthermore, a novel function of phenolic antioxidants such as cell regulation and induction of phase II defense antioxidants are also discussed.  相似文献   

3.
4,6-Di-tert-butyl-2,3-dihydro-2,2-dipentyl-5-benzofuranol (BO-653) is a novel antioxidant synthesized by theoretical findings and considerations. Here we report on the aqueous peroxyl radical-induced oxidation of human plasma in the presence of BO-653. When BO-653 was given to healthy human subjects at 400 mg twice daily for 28 days, lipids in the resulting plasma were protected from oxidation compared with lipids present in plasma from subjects receiving placebo. Similarly, BO-653 added in vitro at 50 muM inhibited the peroxyl radical-induced accumulation of cholesteryl ester hydroperoxides that occurred in the presence of alpha-tocopherol, although BO-653 did not decrease the rate of consumption of ascorbate, albumin-bound bilirubin, and uric acid. The antioxidant action of in vivo and in vitro added BO-653 was associated with the formation of two major reaction products of BO-653, the structures of which were elucidated by mass spectrometry and nuclear magnetic resonance analyses. The products were identified as stereoisomers of dioxybis(4,6-di-tert.-butyl-2,3,5,7a-tetrahydro-2,2-dipentylbenzofuran-5-one). These dialkylperoxides of BO-653 might be useful markers to assess the antioxidant function of BO-653 in biological systems in vivo.  相似文献   

4.
The role of radical-scavenging antioxidant against oxidative stress has received much attention. The antioxidant capacity has been assessed by various methods. Above all, oxygen radical absorbance capacity (ORAC) has been frequently employed [Prior et.al., J. Agric. Food Chem.2005, 53, 4290]. In the present study, the antioxidant capacity of 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran (BO-653) and uric acid was assessed by ORAC method using pyranine as a reference probe and compared with that against lipid peroxidation of human plasma. It was found that BO-653 was assessed to be much less potent than uric acid by ORAC method, whereas BO-653 exerted much higher antioxidant activity than uric acid against plasma lipid peroxidation. The reason for such discrepancy is discussed. The results suggest that ORAC method is suitable for the assessment of free radical scavenging capacity, but not for the assessment of antioxidant capacity against lipid peroxidation in plasma.  相似文献   

5.
Effect of phytyl side chain of vitamin E on its antioxidant activity   总被引:6,自引:0,他引:6  
Inhibition of the oxidation of methyl linoleate and soybean phosphatidylcholine in homogeneous solution and in aqueous dispersion by four chain-breaking antioxidants, vitamin E (alpha-tocopherol), 2,2,5,7,8-pentamethyl-6-chromanol, 2,6-di-tert-butyl-4-methylphenol, and stearyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, was studied to examine the effect of the phytyl side chain of vitamin E on its antioxidant activity. These four antioxidants exerted similar antioxidative activities. They were also effective as antioxidants in protecting the oxidation of soybean phosphatidylcholine liposomes in water dispersion. However, when they were incorporated into dimyristoyl phosphatidylcholine liposomes, only 2,2,5,7,8-pentamethyl-6-chromanol and 2,6-di-tert-butyl-4-methylphenol could suppress the oxidation of soybean phosphatidylcholine liposomes dispersed in the same aqueous system. It was concluded that the antioxidative properties of vitamin E and its model without the phytyl side chain are quite similar within micelles and liposomes as well as in homogeneous solution but that the phytyl side chain enhances the retainment of vitamin E in liposomes and suppresses the transfer of vitamin E between liposomal membranes.  相似文献   

6.
The oxidative hemolysis of rabbit erythrocytes induced by free radicals and its inhibition by chain-breaking antioxidants have been studied. The free radicals were generated from either a water-soluble or a lipid-soluble azo compound which, upon its thermal decomposition, gave carbon radicals that reacted with oxygen immediately to give peroxyl radicals. The radicals generated in the aqueous phase from a water-soluble azo compound induced hemolysis in air, but little hemolysis was observed in the absence of oxygen. Water-soluble chain-breaking antioxidants, such as ascorbic acid, uric acid, and water-soluble chromanol, suppressed the hemolysis dose dependently. Vitamin E in the erythrocyte membranes was also effective in suppressing the hemolysis. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without phytyl side chain, incorporated into dimyristoylphosphatidylcholine liposomes, suppressed the above hemolysis, but alpha-tocopherol did not suppress the hemolysis. Soybean phosphatidylcholine liposomes also induced hemolysis, and a lipid-soluble azo initiator incorporated into the soybean phosphatidylcholine liposomes accelerated the hemolysis. The chain-breaking antioxidants incorporated into the liposomes were also effective in suppressing this hemolysis.  相似文献   

7.
Oxidative stress and the role of antioxidants are currently one of the most important subjects in the field of life science. In the present study, we assessed the oxidation of plasma lipids induced by free radicals and its inhibition by antioxidants with a fluorescence probe BODIPY. Vitamin E and C-depleted plasma was used to evaluate the inherent action of several antioxidants. BODIPY reacted with free radicals in plasma to emit fluorescence (ex. 510 nm, em. 520 nm), which was suppressed by the antioxidants in a concentration-dependent manner. However, the suppression of fluorescence emission by antioxidants did not always correlate quantitatively with the suppression of lipid peroxidation. For example, alpha-tocopherol suppressed BODIPY fluorescence but enhanced the peroxidation of plasma lipids in the absence of ascorbic acid. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without a phytyl side chain, almost completely suppressed both fluorescence emission and lipid peroxidation in the plasma. These results show that BODIPY can be used as a convenient probe for radical scavenging, but that care should be taken for the evaluation of antioxidant capacity.  相似文献   

8.
Antioxidant BO-653 and human macrophage-mediated LDL oxidation   总被引:2,自引:0,他引:2  
Oxidation of LDL is now widely accepted to be involved in atherogenesis. The aim of this study was to examine the effect of BO-653, a strong radical scavenger and antioxidant, on oxidation of LDL by human macrophages in vitro. Fifty microg/ml LDL protein was incubated with macrophages in Ham's F10 medium, supplemented with additional Fe2+, for up to 48 h. Then the medium was analysed by LDL agarose gel electrophoresis, the thiobarbituric acid assay and gas chromatography. In the absence of added exogenous antioxidants, after 24h LDL oxidation produced 30.48 nmoles MDA equivalents/mg LDL protein and a relative electrophoretic mobility of 4.74. Linoleic acid (18:2), arachidonic acid (20:4) and cholesterol were depleted and 7beta-hydroxycholesterol was generated. BO-653 completely inhibited this cell-mediated oxidation of LDL in concentrations as low as 5 microM, being more effective than either alpha-tocopherol or probucol, which completely inhibited oxidation at 200 and 80 microM and only partially at 80 and 8 microM, respectively. This inhibition of cell-mediated LDL oxidation was not due to toxicity, as alpha-tocopherol, probucol and BO-653 were not toxic for the macrophages at the concentrations tested. Eighty microM alpha-tocopherol, 8 microM probucol and 5 microM BO-653 significantly reduced the toxicity to the oxidising culture caused by LDL oxidation. The results show that in this system BO-653 is a more effective antioxidant than alpha-tocopherol or probucol.  相似文献   

9.
It has been proposed that phenolic antioxidants such as probucol exert their anti-atherogenic effects through scavenging lipid-derived radicals. In this study the potential for genomics to reveal unanticipated pharmacological properties of phenolic antioxidants is explored. It was found that two anti-atherogenic compounds, BO-653 and probucol, inhibited the expression of three alpha-type proteasome subunits, PMSA2, PMSA3, and PMSA4 in human umbilical vein endothelial cells. Here we report that both BO-653 and probucol caused not only inhibition of the mRNA levels of these three subunits but also inhibition of both the gene expression and protein synthesis of the alpha-type subunit, PMSA1. Other subunit components of the proteasome such as the beta-type subunits (PMSB1, PMSB7), the ATPase subunit of 19 S (PMSC6), the non-ATPase subunit of 19 S (PMSD1), and PA28 (PMSE2) were not significantly affected by treatment with these compounds. The specific inhibition of alpha-type subunit expression in response to these antioxidants resulted in functional alterations of the proteasome with suppression of degradation of multiubiquitinated proteins and IkappaBalpha. These results suggest that certain compounds previously classified solely as antioxidants are able to exert potentially important modulatory effects on proteasome function.  相似文献   

10.
Selenium is an essential trace element and it is well known that selenium is necessary for cell culture. However, the mechanism underlying the role of selenium in cellular proliferation and survival is still unknown. The present study using Jurkat cells showed that selenium deficiency in a serum-free medium decreased the selenium-dependent enzyme activity (glutathione peroxidases and thioredoxin reductase) within cells and cell viability. To understand the mechanism of this effect of selenium, we examined the effect of other antioxidants, which act by different mechanisms. Vitamin E, a lipid-soluble radical-scavenging antioxidant, completely blocked selenium deficiency-induced cell death, although alpha-tocopherol (biologically the most active form of vitamin E) could not preserve selenium-dependent enzyme activity. Other antioxidants, such as different isoforms and derivatives of vitamin E, BO-653 and deferoxamine mesylate, also exerted an inhibitory effect. However, the water-soluble antioxidants, such as ascorbic acid, N-acetyl cysteine, and glutathione, displayed no such effect. Dichlorodihydrofluorescein (DCF) assay revealed that cellular reactive oxygen species (ROS) increased before cell death, and sodium selenite and alpha-tocopherol inhibited ROS increase in a dose-dependent manner. The generation of lipid hydroperoxides was observed by fluorescence probe diphenyl-1-pyrenylphosphine (DPPP) and HPLC chemiluminescence only in selenium-deficient cells. These results suggest that the ROS, especially lipid hydroperoxides, are involved in the cell death caused by selenium deficiency and that selenium and vitamin E cooperate in the defense against oxidative stress upon cells by detoxifying and inhibiting the formation of lipid hydroperoxides.  相似文献   

11.
Antioxidants possess potent ability to regulate gene expression beyond their specific antioxidant activity. Genomic analysis reveals that three phenolic antioxidants, probucol, BO-653, and tBHQ, all of which have a phenoxyl group with one or two tert-butyl groups at the ortho-position, inhibit both the mRNA and protein levels of proteasome alpha-subunits in human endothelial cells. The chemical structure required for the gene regulation was studied by using derivatives of BO-653 and other antioxidants. It was found that the phenoxyl group and tert-butyl group at the ortho-position of the compounds were critical for down-regulation of the proteasome gene. Two antioxidant responsive elements (AREs) were identified in the promoter region of proteasome alpha subunit 3 (PSMA3). Results from promoter truncation analysis revealed that the proximal ARE region was necessary for the down-regulation of the expression of PSMA3. Electrophoretic mobility shift assays revealed that BO-653-mediated induction of DNA-binding to an upstream promoter region of PSMA3 containing the ARE motif was blocked by antibody against c-Jun but not Nrf2. These results indicate that the suppression of the proteasome alpha subunits expression by phenolic antioxidants is strictly dependent on both their chemical structure and the ARE consensus region in the promoter, which may be negatively regulated by AP-1.  相似文献   

12.
Trolox C (Trolox), a water-soluble analogue of vitamin E lacking the phytyl chain, was investigated with respect to its effect on the oxidation of low-density lipoprotein (LDL). Trolox was added at different time points of LDL oxidation induced by Cu2+ and aqueous peroxyl radicals. In the case of Cu2+ -induced LDL oxidation, the effect of Trolox changed from antioxidant to prooxidant when added at later time points during oxidation; this transition occurred whenever alpha-tocopherol was just consumed in oxidizing LDL. Thus, in the case of Cu2+ -dependent LDL oxidation, the presence of lipophilic antioxidants in the LDL particle is likely to be a prerequisite for the antioxidant activity of Trolox. When oxidation was induced by peroxyl radicals, as a model of metal-independent oxidation, the effect of Trolox was always antioxidant, suggesting the importance of Cu2+ /Cu+ redox-cycling in the prooxidant mechanism of Trolox. Our data suggest that, in the absence of significant amounts of lipophilic antioxidants, LDL becomes highly susceptible to oxidation induced by transition metals in the presence of aqueous reductants.  相似文献   

13.
Antioxidants possess potent ability to regulate gene expression beyond their specific antioxidant activity. Genomic analysis reveals that three phenolic antioxidants, probucol, BO-653, and tBHQ, all of which have a phenoxyl group with one or two tert-butyl groups at the ortho-position, inhibit both the mRNA and protein levels of proteasome α-subunits in human endothelial cells. The chemical structure required for the gene regulation was studied by using derivatives of BO-653 and other antioxidants. It was found that the phenoxyl group and tert-butyl group at the ortho-position of the compounds were critical for down-regulation of the proteasome gene. Two antioxidant responsive elements (AREs) were identified in the promoter region of proteasome α subunit 3 (PSMA3). Results from promoter truncation analysis revealed that the proximal ARE region was necessary for the down-regulation of the expression of PSMA3. Electrophoretic mobility shift assays revealed that BO-653-mediated induction of DNA-binding to an upstream promoter region of PSMA3 containing the ARE motif was blocked by antibody against c-Jun but not Nrf2. These results indicate that the suppression of the proteasome α subunits expression by phenolic antioxidants is strictly dependent on both their chemical structure and the ARE consensus region in the promoter, which may be negatively regulated by AP-1.  相似文献   

14.
The rice mutants M249 and M134 accumulate chlorophyllides a and b which are esterified with incompletely reduced alcohols such as geranylgeraniol, dihydrogeranylgeraniol, and tetrahydrogeranylgeraniol. Quantities of alpha-tocopherol, phylloquinone, and menaquinones in leaves of these mutants were determined by high performance liquid chromatography (HPLC) with a fluorescence detector after post-column chemical reduction to convert quinones to fluorescent quinols. Methylnaphthoquinones, varying in the reduction state of the side chain (menaquinones), were detected in leaf segments of the rice mutants on HPLC analyses with both high selectivity and sensitivity to plant quinones. Mutant M249 preferentially accumulated menaquinone, which contains tetrahydrogeranylgeraniol as its side chain. However, mutant M134 exhibited preferential accumulation of menaquinone with a geranylgeraniol side chain. In both mutants, the accumulation patterns of menaquinones with different prenyl side chains were similar to those of chlorophyll with the corresponding prenyl side chains. The content of P700, the photosystem I primary electron donor, in the wild type was greater than that of either mutant, on both a chlorophyll and a fresh weight basis. However, the ratios of total methylnaphthoquinones to P700 were similar in both the wild type and the mutants. Since no comparative large differences in photosynthetic activity exist between the wild type and the mutants, these results suggest that the hydrogenation of the methylnaphthoquinone side chain to phytol is not an essential requirement for it to function as an electron acceptor in photosystem I. On the other hand, alpha-tocopherol was detected in fully developed leaves of the wild type, but not in those of the mutants. Accumulation of menaquinones and the loss of alpha-tocopherol in mutant leaves suggest that the reduction of chlorophyll-geranylgeraniol to phytol and that of geranylgeranyl pyrophosphate to phytyl pyrophosphate are catalysed by the same enzyme.  相似文献   

15.
The effect of up to 20 mol% incorporation of alpha-tocopherol on acyl chain order and dynamics in liquid crystalline phosphatidylcholine (PC) membranes was studied as a function of acyl chain unsaturation by electron spin resonance (ESR) of 5-, 7-, 12- and 16-doxyl spin labelled stearic acids intercalated into the membrane. Order parameters S in the upper portion of the chain (positions 5 and 7) and correlation times tau C in the lower portion (positions 12 and 16) determined from the ESR spectra indicate that in general alpha-tocopherol restricts acyl chain motion within the membrane. The magnitude of the increases in order appears to be dependent upon phospholipid molecular area, being the greatest (up to 15%) in saturated dimyristoylphosphatidylcholine (14:0-14:0 PC) which possesses a relatively small area per molecule as opposed to much smaller increases (less than 3%) in unsaturated PC membranes of larger molecular area. This behavior is interpreted as incompatible with the hypothesis of Lucy and coworkers (A.T. Diplock and J.A. Lucy (1973) FEBS Lett. 29, 205-210), who proposed that membranes are structurally stabilized by interactions between the phytyl side chain of alpha-tocopherol and the polyunsaturated chains of phospholipids.  相似文献   

16.
Two antioxidant compounds were isolated from C. sappan L by multiple steps of column chromatography and thin layer chromatography in succession with superoxide scavenging assay as activity monitor. Structures of the two compounds were determined by spectroscopic methods as 1',4'-dihydro-spiro[benzofuran-3(2H),3'-[3H-2]benzopyran]-1',6',6',7'-tetrol (compound 1) and 3-[[4,5-dihydroxy-2(hydroxymethyl) phenyl]-methyl]-2,3-dihydro-3,6-benzofurandiol (compound 2). Characterization of antioxidant properties of these two compounds was done by determining the inhibitory effect on xanthine oxidase activity as well as scavenging effect on superoxide anion and hydroxyl radicals. Our results indicated that compounds 1 and 2 inhibited xanthine oxidase activity and scavenged superoxide anion and hydroxyl radicals. Compounds 1 and 2 possessed similar radical scavenging activities as ascorbic acid, and they were more effective than other well-known antioxidants such as alpha-tocopherol, beta-carotene, and BHT. As inhibitors of free radical formation, compounds 1 and 2 were more effective than all the other antioxidants tested. In conclusion, compounds 1 and 2 can be regarded as primary antioxidants with radical-scavenging and chain-breaking activities as well as secondary antioxidants with inhibitory effect on radical generation.  相似文献   

17.
A new metabolite of vitamin K, 2(3)-hydroxy-2,3-dihydro-2-methyl,3-phytyl-1,4-naphthoquinone (hydroxyvitamin K), has been identified as a product of vitamin K epoxide metabolism in hepatic microsomes from warfarin-resistant rats, but not in those derived from normal rats. The structure was determined by comparison of the high performance liquid chromatography retention times, UV, IR, CD, and mass spectra of the unknown with chemically synthesized standards. Alterations in the formation of hydroxyvitamin K occur in parallel with alterations in total vitamin K epoxide conversion with respect to reaction time, extent of reaction, detergent stimulation, and inhibition by warfarin. Thus, hydroxyvitamin K appears to be a product of the warfarin-resistant vitamin K epoxide reductase. It is neither a substrate nor an inhibitor of epoxide reduction. Hydroxyvitamin K is formed from both enantiomers of racemic vitamin K epoxide with little stereoselectivity for the configuration of either the oxirane ring or the phytyl side chain. The reaction is stereospecific; however, the biologically formed (+)-vitamin K epoxide yields exclusively (+)-3-hydroxyvitamin K. Observation of this product is discussed as a key to understanding the normal reaction mechanism of the enzyme.  相似文献   

18.
Tocopherols (vitamin E) function as inhibitors of lipid peroxidation in biomembranes by donating a hydrogen atom to the chain propagating lipid radicals, thus giving rise to chromanoxyl radicals of the antioxidant. We have shown that alpha-tocopherol homologs differing in the lengths of their hydrocarbon side chains (alpha-Cn) manifest strikingly different antioxidant potencies in membranes. The antioxidant activity of tocopherol homologs during (Fe2+ + ascorbate)- or (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomes increased in the order alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Chromanoxyl radicals generated from alpha-tocopherol and its more polar homologs by an enzymatic oxidation system (lipoxygenase + linolenic acid) can be recycled in rat liver microsomes by NAD-PH-dependent electron transport or by ascorbate. The efficiency of recycling increased in the same order: alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Thus the high efficiency of regeneration of short-chain homologs of vitamin E may account for their high antioxidant potency.  相似文献   

19.
Hypochlorite or its acid, hypochlorous acid, may exert both beneficial and toxic effects in vivo. In order to understand the role and action of hypochlorite, the formation of active oxygen species and its kinetics were studied in the reactions of hypochlorite with peroxides and amino acids. It was found that tert-butyl hydroperoxide and methyl linoleate hydroperoxide reacted with hypochlorite to give peroxyl and/or alkoxyl radicals with little formation of singlet oxygen in contrast to hydrogen peroxide, which gave singlet oxygen exclusively. Amino acids and ascorbate reacted with hypochlorite much faster than peroxides. Free radical-mediated lipid peroxidation of micelles and membranes in aqueous suspensions was induced by hypochlorite, the chain initiation being the decomposition of hydroperoxides by hypochlorite. It was suppressed efficiently by ebselen which reduced hydroperoxides and by alpha-tocopherol, which broke chain propagation, but less effectively by hydrophilic antioxidants present in the aqueous phase. Cysteine suppressed the oxidation, but it was poorer antioxidant than alpha-tocopherol. Ascorbate also exerted moderate antioxidant capacity, but it acted as a synergist with alpha-tocopherol. Taken together, it was suggested that the primary target of hypochlorite must be sulfhydryl and amino groups in proteins and that the lipid peroxidation may proceed as the secondary reaction, which is induced by radicals generated from sulfenyl chlorides and chloramines.  相似文献   

20.
The effect of pro-oxidant (ions of iron) and antioxidants (alpha-tocopherol, propylgallate) on hydroxylation of polycyclic hydrocarbon benz(a)-pyrene and the effect of hydroxylation process on lipid peroxidation have been studied. The role of allyl radicals formed in the fatty acid chains is discussed. The binding of oxygen radicals (formation of peroxy radicals) is regarded only as on of the possible reactions of the radical utilization. It is assumed that other reactions involving lipid (allyl) radicals, in particular, hydroxylation of benz(alpha)pyrene may occur in microsomal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号