首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
infrastructurel techniques have shown that an early event in the exocytotic fusion of a secretory vesicle is the formation of a narrow, water-filled pore spanning both the vesicle and plasma membranes and connecting the lumen of the secretory vesicle to the extracellular environment. Smaller precursors of the exocytotic fusion pore have been detected using electrophysio-logical techniques, which reveal a dynamic fusion pore that quickly expands to the size of the pores seen with electron microscopy. While it is clear that in the latter stages of expansion, when the size of the fusion pore is several orders of magnitude bigger than any known macromolecule, the fusion pore must be mainly made of lipids, the structure of the smaller precursors is unknown. Patch-clamp measurements of the activity of individual fusion pores in mast cells have shown that the fusion pore has some unusual and unexpected properties, namely that there is a large flux of lipid through the pore and the rate of pore closure has a discontinuous temperature dependency, suggesting a purely lipidic fusion pore. Moreover, comparisons of experimental data with theoretical fusion pores and with breakdown pores support the view that the fusion pore is initially a pore through a single bilayer, as would be expected for membrane fusion proceeding through a hemifusion mechanism. Based on these observations we present a model where the fusion pore is initially a pore through a single bilayer. Fusion pore formation is regulated by a macromolecular scaffold of proteins that is responsible for bringing the plasma membrane into a highly curved dimple very close to a tense secretory granule membrane, creating the architecture where the strongly attractive hydrophobic force causes the membranes to form a ‘hemifusion’ intermediate. Membrane fusion is completed by the formation of an aqueous pore after rupture of the shared bilayer. We also propose that the microenvironment of the interface when the pore first opens, dominated by the charged groups on the secretory vesicle matrix and phospholipids, will greatly influence the release of secretory products.  相似文献   

2.
Formation of the fusion pore is a central question for regulated exocytosis by which secretory cells release neurotransmitters or hormones. Here, by dynamically monitoring exocytosis of large vesicles (2–7 μm) in astrocytes with two-photon microscopy imaging, we found that the exocytotic fusion pore was generated from the SNARE-dependent fusion at a ring shape of the docked plasma-vesicular membrane and the movement of a fusion-produced membrane fragment. We observed two modes of fragment movements, 1) a shift fragment that shifted to expand the fusion pore and 2) a fall-in fragment that fell into the collapsed vesicle to expand the fusion pore. Shift and fall-in modes are associated with full and partial collapses of large vesicles, respectively. The astrocytic marker, sulforhodamine 101, stained the fusion-produced membrane fragment more brightly than FM 1-43. Sulforhodamine 101 imaging showed that double fusion pores could simultaneously occur in a single vesicle (16% of large vesicles) to accelerate discharge of vesicular contents. Electron microscopy of large astrocytic vesicles showed shift and fall-in membrane fragments. Two modes of fusion pore formation demonstrate a novel mechanism underlying fusion pore expansion and provide a new explanation for full and partial collapses of large secretory vesicles.  相似文献   

3.
Peptidergic neurotransmission is slow compared to that mediated by classical neurotransmitters. We have studied exocytotic membrane fusion and cargo release by simultaneous capacitance measurements and confocal imaging of single secretory vesicles in neuroendocrine cells. Depletion of the readily releasable pool (RRP) correlated with exocytosis of 10%-20% of the docked vesicles. Some remaining vesicles became releasable after recovery of RRP. Expansion of the fusion pore, seen as an increase in luminal pH, occurred after approximately 0.3 s, and peptide release was delayed by another 1-10 s. We conclude that (1) RRP refilling involves chemical modification of vesicles already in place, (2) the release of large neuropeptides via the fusion pore is negligible and only proceeds after complete fusion, and (3) sluggish peptidergic transmission reflects the time course of vesicle emptying.  相似文献   

4.
The temperature dependence of Ca(2+)-triggered exocytosis was studied using carbon fiber amperometry to record the release of norepinephrine from PC12 cells. Single-vesicle fusion events were examined at temperatures varying from 12 to 28 degrees C, and with release elicited by depolarization. Measurements were made of the initial and maximum frequencies of exocytotic events, of fusion pore lifetime, flux through the open fusion pore, kiss-and-run versus full-fusion probability, and parameters associated with the shapes of amperometric spikes. The fusion pore open-state flux, and all parameters associated with spike shape, including area, rise time, and decay time, had weak temperature dependences and activation energies in the range expected for bulk diffusion in an aqueous solution. Kiss-and-run events also varied with temperature, with lower temperatures increasing the relative probability of kiss-and-run events by approximately 50%. By contrast, kinetic parameters relating to the frequency of exocytotic events and fusion pore transitions depended much more strongly on temperature, suggesting that these processes entail structural rearrangements of proteins or lipids or both. The weak temperature dependence of spike shape suggests that after the fusion pore has started to expand, structural transitions of membrane components are no longer kinetically limiting. This indicates that the content of a vesicle is expelled completely after fusion pore expansion.  相似文献   

5.
Fusion pores or porosomes are basket-like structures at the cell plasma membrane, at the base of which, membrane-bound secretory vesicles dock and fuse to release vesicular contents. Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. ImmunoAFM studies demonstrated the release of vesicular contents through the pores. Transmission electron microscopy (TEM) further confirmed the presence of fusion pores, and immunoAFM, and immunochemical studies demonstrated t-SNAREs to localize at the base of the fusion pore. In the present study, the morphology, function, and composition of the immunoisolated fusion pore was investigated. TEM studies reveal in further detail the structure of the fusion pore. Immunoblot analysis of the immunoisolated fusion pore reveals the presence of several isoforms of the proteins, identified earlier in addition to the association of chloride channels. TEM and AFM micrographs of the immunoisolated fusion pore complex were superimposable, revealing its detail structure. Fusion pore reconstituted into liposomes and examined by TEM, revealed a cup-shaped basket-like morphology, and were functional, as demonstrated by their ability to fuse with isolated secretory vesicles.  相似文献   

6.
Hormones are released from neuroendocrine cells by passing through an exocytotic pore that forms after vesicle and plasma membrane fusion. An elegant way to study this process at the single-vesicle level is to use styryl dyes, which stain not only the membrane, but also the matrix of individual vesicles in some neuroendocrine cells. However, the mechanism by which the vesicle matrix is stained is not completely clear. One possibility is that molecules of the styryl dye in the bath solution dissolve first in the plasma membrane and are then transported into the vesicle by lateral diffusion in the plane of the membrane, and finally the vesicle matrix is stained from the vesicle membrane. On the other hand, these molecules may enter the vesicle lumen and reach the vesicle matrix by permeation through an open aqueous fusion pore. To address these questions, we exposed pituitary lactotrophs to different concentrations of FM 4-64 to monitor the fluorescence increase of single vesicles by confocal microscopy after the stimulation of cells by high K(+). The results show that the membrane and the vesicle matrix exhibit different concentration-dependent properties: the plasma membrane staining by FM 4-64 has a higher affinity in comparison to the vesicle matrix. Moreover, the kinetics of vesicle loading by FM 4-64 exhibited a concentration-dependent process, which indicates that FM 4-64 molecules stain the vesicle matrix by aqueous permeation through an open fusion pore.  相似文献   

7.
Ultrastructure of lactating bovine and rat mammary epithelial cells was studied with emphasis on secretory vesicle interactions. In the apical zone of the cell, adjacent secretory vesicles formed ball and socket configurations at their points of apposition. Similar configurations were formed between plasma membrane and secretory vesicle membrane. These structures may be formed by the diffusion of water between vesicles with different osmotic potentials. Frequently, vesicular chains consisting of 10 or more linked secretory vesicles were observed. Prior to the exocytotic release of casein micelles, adjacent vesicles fused through fragmentation of the ball and socket membrane. These membrane fragments and the casein micelles appeared to be secreted into the alveolar lumen after passing from one vesicle into another and finally through a pore in the apical plasma membrane. Emptied vesicular chains appeared to collapse and fragmentation of their membrane was observed. Based on these observations, we suggest that most vesicular membrane does not directly contact or become incorporated into the plasma membrane during secretion of the nonfat phase of milk.  相似文献   

8.
Exocytosis of secretory vesicles begins with a fusion pore connecting the vesicle lumen to the extracellular space. This pore may then expand or it may close to recapture the vesicle intact. The contribution of the latter, termed kiss-and-run, to exocytosis of pancreatic beta cell large dense-core vesicles (LDCVs) is controversial. Examination of single vesicle fusion pores demonstrated that rat beta cell LDCVs can undergo exocytosis by rapid pore expansion, by the formation of stable pores, or via small transient kiss-and-run fusion pores. Elevation of cAMP shifted LDCV fusion pore openings to the transient mode. Under this condition, the small fusion pores were sufficient for release of ATP, stored within LDCVs together with insulin. Individual ATP release events occurred coincident with amperometric "stand alone feet" representing kiss-and-run. Therefore, the LDCV kiss-and-run fusion pores allow small transmitter release but likely retain the larger insulin peptide. This may represent a mechanism for selective intraislet signaling.  相似文献   

9.
In alveolar type II cells, the release of surfactant is considerably delayed after the formation of exocytotic fusion pores, suggesting that content dispersal may be limited by fusion pore diameter and subject to regulation at a postfusion level. To address this issue, we used confocal FRAP and N-(3-triethylammoniumpropyl)-4-(4-[dibutylamino]styryl) pyridinium dibromide (FM 1-43), a dye yielding intense localized fluorescence of surfactant when entering the vesicle lumen through the fusion pore (Haller, T., J. Ortmayr, F. Friedrich, H. Volkl, and P. Dietl. 1998. Proc. Natl. Acad. Sci. USA. 95:1579-1584). Thus, we have been able to monitor the dynamics of individual fusion pores up to hours in intact cells, and to calculate pore diameters using a diffusion model derived from Fick's law. After formation, fusion pores were arrested in a state impeding the release of vesicle contents, and expanded at irregular times thereafter. The expansion rate of initial pores and the probability of late expansions were increased by elevation of the cytoplasmic Ca2+ concentration. Consistently, content release correlated with the occurrence of Ca2+ oscillations in ATP-treated cells, and expanded fusion pores were detectable by EM. This study supports a new concept in exocytosis, implicating fusion pores in the regulation of content release for extended periods after initial formation.  相似文献   

10.
Structure and Composition of the Fusion Pore   总被引:7,自引:0,他引:7       下载免费PDF全文
Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. Fusion pores were stable structures at the cell plasma membrane where secretory vesicles dock and fuse to release vesicular contents. In the present study, transmission electron microscopy confirms the presence of fusion pores and reveals their detailed structure and association with membrane-bound secretory vesicles in pancreatic acinar cells. Immunochemical studies demonstrated that t-SNAREs, NSF, actin, vimentin, α-fodrin and the calcium channels α1c and β3 are associated with the fusion complex. The localization and possible arrangement of SNAREs at the fusion pore are further demonstrated from combined AFM, immunoAFM, and electrophysiological measurements. These studies reveal the fusion pore or porosome to be a cup-shaped lipoprotein structure, the base of which has t-SNAREs and allows for docking and release of secretory products from membrane-bound vesicles.  相似文献   

11.
It is well established that the release of surfactant phospholipids into the alveolar lumen proceeds by the exocytosis of lamellar bodies (LBs), the characteristic storage organelles of surfactant in alveolar type II cells. Consequently, the fusion of LBs with the plasma membrane and the formation of exocytotic fusion pores are key steps linking cellular synthesis of surfactant with its delivery into the alveolar space. Considering the unique structural organization of LBs or LB-associated aggregates which are found in lung lavages, and the roughly 1-microm-sized dimensions of these particles, we speculated whether the fusion pore diameter of fused LBs might be a specific hindrance for surfactant secretion, delaying or even impeding full release. In this mini-review, we have compiled published data shedding light on a possibly important role of fusion pores during the secretory process in alveolar type II cells.  相似文献   

12.
The classical model of secretory vesicle recycling after exocytosis involves the retrieval of membrane (the omega figure) at a different site. An alternative model involves secretory vesicles transiently fusing with the plasma membrane (the 'kiss and run' mechanism) [1,2]. No continuous observation of the fate of a single secretory vesicle after exocytosis has been made to date. To study the dynamics of fusion immediately following exocytosis of insulin-containing vesicles, enhanced green fluorescent protein (EGFP) fused to the vesicle membrane protein phogrin [3] was delivered to the secretory vesicle membrane of INS-1 beta-cells using an adenoviral vector. The behaviour of the vesicle membrane during single exocytotic events was then examined using evanescent wave microscopy [4-6]. In unstimulated cells, secretory vesicles showed only slow Brownian movement. After a depolarizing pulse, most vesicles showed a small decrease in phogrin-EGFP fluorescence, and some moved laterally over the plasma membrane for approximately 1 microm. In contrast, secretory vesicles loaded with acridine orange all showed a transient (33-100 ms) increase in fluorescence intensity followed by rapid disappearance. Simultaneous observations of phogrin-EGFP and acridine orange indicated that the decrease in EGFP fluorescence occurred at the time of the acridine orange release, and that the lateral movement of EGFP-expressing vesicles occurred after this. Post-exocytotic retrieval of the vesicle membrane in INS-1 cells is thus slow, and can involve the movement of empty vesicles under the plasma membrane ('kiss and glide').  相似文献   

13.
Earlier studies using electron microscopy demonstrate that there is no loss of secretory vesicles following exocytosis. Depletion however, of vesicular contents resulting in the formation of empty or partially empty vesicles is seen in electron micrographs, post exocytosis, in a variety of cells. Our studies using atomic force microscopy (AFM) reveal that following stimulation of secretion, live pancreatic acinar cells having 100-180 nm in diameter fusion pores located at the apical plasma membrane, dilate only 25-35% during exocytosis. Since secretory vesicles in pancreatic acinar cells range in size from 200 nm to 1200 nm in diameter, their total incorporation at the fusion pore, would distend the structure much more then what is observed. These earlier results prompted the current study to determine secretory vesicle dynamics in live pancreatic acinar cells following exocytosis. AFM studies on live acinar cells reveal no loss of secretory vesicle number following exocytosis. Parallel studies using electron microscopy, further confirmed our AFM results. These studies demonstrate that following stimulation of secretion, membrane-bound secretory vesicles transiently dock and fuse to release vesicular contents.  相似文献   

14.
The release of vesicle contents following exocytotic fusion is limited by various factors including the size of the fusion pore. Fusion pores are channel-like, narrow structures after formation and proceed through semi-stable states ('fusion pore flickering'), unless they fully expand (full fusion) or close again (transient fusion). Partial release of vesicle contents may occur during transient fusion, which was described to last between milliseconds and seconds, depending on the size of the vesicle. We studied fusion pores in a slow-secreting lung epithelial cell (type II cell) using fluorescence staining of vesicle contents (surfactant) and fluorescence recovery after photobleaching (FRAP). Surfactant is a lipidic material, which is secreted into the alveolar lumen to reduce the surface tension in the lung. We found release of surfactant to be a slow process, which can last for hours. Accordingly, fusion pores in these cells are stable structures, which appear to be a barrier for release. FRAP measurements suggest that transient fusions occasionally take place in these long-lasting fusion pores, resulting in partial release of surfactant into the extracellular space. These data suggest that postfusion mechanisms may regulate the amount of secreted surfactant.  相似文献   

15.
The swelling of the secretory granule matrix which follows fusion has been proposed as the driving force for the rapid expansion of the fusion pore necessary for exocytosis. To test this hypothesis, we have combined simultaneous measurements of secretory granule swelling using videomicroscopy with patch clamp measurements of the time course of the exocytotic fusion pore in mast cells from the beige mouse. We show that isotonic acidic histamine solutions are able to inhibit swelling of the secretory granule matrix both in purified secretory granules lysed by electroporation and in intact cells stimulated to exocytose by guanine nucleotides. In contrast to the inhibitory effects on granule swelling, the rate of expansion of the exocytotic fusion pore is unaffected. Therefore, as the rate of granule swelling was more than 20 times slower under these conditions, swelling of the secretory granule matrix due to water entry through the fusion pore cannot be the force responsible for the characteristic rapid expansion of the exocytotic fusion pore. We suggest that tension in the secretory granule membrane, which has recently been demonstrated in fused secretory granules, might be the force that drives the irreversible expansion of the fusion pore.  相似文献   

16.
Neurons and neuroendocrine cells release transmitters and hormones by exocytosis, a highly regulated process in which secretory vesicles or granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Several stages have been recognized in exocytosis. After recruitment and docking at the plasma membrane, vesicles/granules enter a priming step, which is then followed by the fusion process. Cortical actin remodelling accompanies the exocytotic reaction, but the links between actin dynamics and trafficking events remain poorly understood. Here, we review the action of Rho and ADP-ribosylation factor (ARF) GTPases within the exocytotic pathway in adrenal chromaffin cells. Rho proteins are well known for their pivotal role in regulating the actin cytoskeleton. ARFs were originally identified as regulators of vesicle transport within cells. The possible interplay between these two families of GTPases and their downstream effectors provides novel insights into the mechanisms that govern exocytosis.  相似文献   

17.
Fusion pore regulation in peptidergic vesicles   总被引:1,自引:0,他引:1  
Regulated exocytosis, which involves fusion of secretory vesicles with the plasma membrane, is an important mode of communication between cells. In this process, signalling molecules that are stored in secretory vesicles are released into the extracellular space. During the initial stage of fusion, the interior of the vesicle is connected to the exterior of the cell with a narrow, channel-like structure: the fusion pore. It was long believed that the fusion pore is a short-lived intermediate state leading irreversibly to fusion pore dilation. However, recent results show that the diameter of the fusion pore can fluctuate, suggesting that the fusion pore is a subject of stabilization. A possible mechanism is addressed in this article, involving the local anisotropicity of membrane constituents that can stabilize the fusion pore. The molecular nature of such a stable fusion pore to predict how interacting molecules (proteins and/or lipids) mediate changes that affect the stability of the fusion pore and exocytosis is also considered. The fusion pore likely attains stability via multiple mechanisms, which include the shape of the lipid and protein membrane constituents and the interactions between them.  相似文献   

18.
The detection of exocytotic fusion in patch-clamped secretory cells depends on measuring an increase in the cell membrane capacitance as new membrane is added to the plasma membrane. However, in the majority of secretory cells, secretory vesicles are too small (< 200 nm in diameter) to cause a detectable signal. We have found that incubations of normal mouse mast cells with the hydrophobic anion dipicrylamine (DPA), increases cell membrane capacitance by about three times. The large capacitive current induced by DPA was voltage-dependent, having a maximum value at -10 mV. The DPA-induced charge movement could be described by a single barrier model in which the DPA molecules move between two stable states in the bulk lipid matrix of the membrane. More importantly, the DPA treatment produced a sevenfold increase in the size of the capacitance steps observed upon the exocytotic fusion of single secretory granules. A similar amplification of DPA on the secretory vesicle capacitance was observed in a cell with larger (< or = 5 microns in diameter) or with smaller secretory granules (< 250 nm in diameter). Additionally, the increased granule membrane capacitance enlarged the transient capacitive discharge measured upon formation of a fusion pore in normal mast cell granules. Our results indicate that hydrophobic ions provide an important tool for high resolution studies of membrane capacitance.  相似文献   

19.
It has been a long belief that release of substances from the cell to the extracellular milieu by exocytosis is completed by diffusion of the substances from secretory vesicles through the fusion pore. Involvement of any mechanical force that may be superposed on the diffusion to enhance the releasing process has not been elucidated to date. We tackled this problem in cultured bovine chromaffin cells using direct and sensitive methods: the laser-trap forcemetry and the evanescent-wave fluorescence microscopy. With a laser beam, we trapped a micro bead in the vicinity of a cell (with 1 microm of separation) and observed movements of the bead optically. Electrical stimulation of the cell induced many of rapid and transient movements of the bead in a direction away from the cell surface. Upon the same stimulation, secretory vesicles stained with a fluorescent probe, acridine orange, and excited under the evanescent field illumination, showed a flash-like response: a transient increase in fluorescence intensity associated with a diffuse cloud of brightness, followed by a complete disappearance. These mechanical and fluorescence transients indicate a directional flow of substances. Blockers of the Cl(-) channel suppressed the rates of both responses in a characteristic way but not exocytotic fusion itself. Immunocytochemical studies revealed the presence of Cl(-) and K(+) channels on the vesicle membranes. These results suggest that the externalization of hormones or transmitters upon exocytosis of vesicles is augmented by secretion of water from the vesicle membrane through the widened fusion pore, possibly modulating the rate and reach of the hormone or transmitter release and facilitating transport of the signal molecules in intercellular spaces.  相似文献   

20.
Wu Y  Ma L  Cheley S  Bayley H  Cui Q  Chapman ER 《Biochemistry》2011,50(35):7493-7502
Styryl dyes are widely used to study synaptic vesicle (SV) recycling in neurons; vesicles are loaded with dye during endocytosis, and dye is subsequently released via exocytosis. During putative kiss-and-run exocytosis, efflux of dye from individual SVs has been proposed to occur via two sequential steps: dissociation from the membrane followed by permeation through a small fusion pore. To improve our understanding of the kinetics of efflux of dye from vesicles during kiss-and-run events, we examined the rates of efflux of different dyes through nanometer-scale pores formed in membranes by the toxins melittin and α-hemolysin; these pores approximate the size of fusion pores measured in neuroendocrine cells. We found that the axial diameter of each dye was a crucial determinant for permeation. Moreover, the two dyes with the largest cross-sectional areas were completely unable to pass through pores formed by a mutant α-hemolysin that has a slightly smaller pore than the wild-type toxin. The overall time constant for efflux (seconds) of each dye was orders of magnitude slower than the time constant for dissociation from membranes (milliseconds). Thus, the permeation step is rate-limiting, and this observation was further supported by atomistic molecular dynamics simulations. Together, the data reported here help provide a framework for interpreting dye destaining rates from secretory vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号