首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella enterica serovar Typhimurium strain LT2 possesses two nonallelic structural genes, fliC and fljB, for flagellin, the component protein of flagellar filaments. Flagellar phase variation occurs by alternative expression of these two genes. This is controlled by the inversion of a DNA segment, called the H segment, containing the fljB promoter. H inversion occurs by site-specific recombination between inverted repetitious sequences flanking the H segment. This recombination has been shown in vivo and in vitro to be mediated by a DNA invertase, Hin, whose gene is located within the H segment. However, a search of the complete genomic sequence revealed that LT2 possesses another DNA invertase gene that is located adjacent to another invertible DNA segment within a resident prophage, Fels-2. Here, we named this gene fin. We constructed hin and fin disruption mutants from LT2 and examined their phase variation abilities. The hin disruption mutant could still undergo flagellar phase variation, indicating that Hin is not the sole DNA invertase responsible for phase variation. Although the fin disruption mutant could undergo phase variation, fin hin double mutants could not. These results clearly indicate that both Hin and Fin contribute to flagellar phase variation in LT2. We further showed that a phase-stable serovar, serovar Abortusequi, which is known to possess a naturally occurring hin mutation, lacks Fels-2, which ensures the phase stability in this serovar.  相似文献   

2.
Inversional switching systems in procaryotes are composed of an invertible DNA segment and a site-specific recombinase gene adjacent to or contained in the segment. Four related but functionally distinct systems have previously been characterized in detail: the Salmonella typhimurium H segment-hin gene (H-hin), phage Mu G-gin, phage P1 C-cin, and Escherichia coli e14 P-pin. In this article we report the isolation and characterization of three new recombinase genes: pinB, pinD, and defective pinF from Shigella boydii, Shigella dysenteriae, and Shigella flexneri, respectively. The genes pinB and pinD were detected by the complementation of a hin mutation of Salmonella and were able to mediate inversion of the H, P, and C segments. pinB mediated H inversion as efficiently as the hin gene did and mediated C inversion with a frequency three orders of magnitude lower than that of the cin gene. pinD mediated inversion of H and P segments with frequencies ten times as high as those for the genes intrinsic to each segment and mediated C inversion with a frequency ten times lower than that for cin. Therefore, the pinB and pinD genes were inferred to be different from each other. The invertible B segment-pinB gene cloned from S. boydii is highly homologous to the G-gin in size, organization, and nucleotide sequence of open reading frames, but the 5' constant region outside the segment is quite different in size and predicted amino acid sequence. The B segment underwent inversion in the presence of hin, pin, or cin. The defective pinF gene is suggested to hae the same origin as P-pin on e14 by the restriction map of the fragment cloned from a Pin+ transductant that was obtained in transduction from S. flexneri to E. coli delta pin.  相似文献   

3.
We have studied homologous recombination in a derivative of phage lambda containing two 1.4-kb repeats in inverted orientation. Inversion of the intervening 2.5-kb segment occurred efficiently by the Escherichia coli RecBC pathway but markedly less efficiently by the lambda Red pathway or the E. coli RecE or RecF pathways. Inversion by the RecBCD pathway was stimulated by Chi sites located to the right of the invertible segment; this stimulation decreased exponentially by a factor of about 2 for each 2.2 kb between the invertible segment and the Chi site. In addition to RecA protein and RecBCD enzyme, inversion by the RecBC pathway required single-stranded DNA binding protein, DNA gyrase, DNA polymerase I and DNA ligase. Inversion appeared to occur either intra- or intermolecularly. These results are discussed in the framework of a current molecular model for the RecBC pathway of homologous recombination.  相似文献   

4.
The invertible P-DNA segment in the chromosome of Escherichia coli.   总被引:14,自引:2,他引:12       下载免费PDF全文
In the chromosome of many strains of Escherichia coli K12 the excisable element e14 is found, which contains an invertible DNA region. This invertible P region, and the gene responsible for the inversion (pin) were cloned, together with other e14 sequences. The element e14 contains a gene which kills the host cell. This can be repressed by a function also coded by e14. The kil and repressor genes as well as the attachment site of the element were mapped in different regions of the element. The invertible segment and pin gene were sequenced. The invertible segment is 1794 bp long, and contains one large internal open reading frame of 879 bp and reading frames which overlap the end pont of the invertible segment. Although pin highly homologous to gin of phage Mu, neither the genetic organization of the P segment nor the sequence of the putative proteins resemble the invertible G segment of phage Mu (which codes for genes involved in tail fiber assembly). The complete DNA sequences of both invertible segments were screened for homology. No resemblance was found. The P segment is flanked by inverted repeat sequences of 16 bp. Comparison of these with related inversion systems points out that the recombination site maps probably within a 2-bp region. This cross-over site is contained within a short palindromic sequence (AAACC AA GGTTT) which is more or less conserved in the recombination sites of all related DNA invertases.  相似文献   

5.
Moraxella lacunata is a bacterium that is a causative agent of human conjunctivitis and keratitis. We have previously cloned the Q and I pilin (formerly called beta and alpha pilin) genes of Moraxella bovis and determined that an inversion of 2 kilobases (kb) of DNA determines which pilin gene is expressed. Using an M. bovis pilin gene as a hybridization probe to screen a lambda ZAP library of M. lacunata DNA, we have isolated a clone that not only contains the entire type 4 pilin gene inversion region of M. lacunata but inverts the 2-kb region on a plasmid subclone (pMxL1) in Escherichia coli. Deletion derivatives of pMxL1 yielded some plasmids that still had the entire inversion region but were phase locked into one or the other of the two potential orientations. Similarly, insertions of a 2-kb streptomycin-resistant element (omega) within some regions outside of the inversion also resulted in phase-locked plasmids. These deletions and insertions thus localize a probable invertase necessary for the inversion event. The region was sequenced, and an open reading frame with over 98% DNA sequence homology to an open reading frame that we previously found in M. bovis and called ORF2 appeared to be a strong candidate for the invertase. This conclusion was confirmed when a plasmid containing the M. bovis ORF2 supplied, in trans, the inversion function missing from one of the M. lacunata phase-locked inversion mutants. We have named these putative invertase genes piv(ml) (pilin inversion of M. lacunata) and piv(mb) (pilin inversion of M. bovis). Despite previously noted sequence similarities between the M. bovis sites of inversion and those of the Hin family of invertible segments and a 60-base-pair region within the inversion with 50% sequence similarity to the cin recombinational enhancer, there is no significant sequence similarity of the Piv invertases to the Hin family of invertases.  相似文献   

6.
H Sandmeier  S Iida    W Arber 《Journal of bacteriology》1992,174(12):3936-3944
Plasmid p15B and the genome of bacteriophage P1 are closely related, but their site-specific DNA inversion systems, Min and Cin, respectively, do not have strict structural homology. Rather, the complex Min system represents a substitution of a Cin-like system into an ancestral p15B genome. The substituting sequences of both the min recombinase gene and the multiple invertible DNA segments of p15B are, respectively, homologous to the pin recombinase gene and to part of the invertible DNA of the Pin system on the defective viral element e14 of Escherichia coli K-12. To map the sites of this substitution, the DNA sequence of a segment adjacent to the invertible segment in the P1 genome was determined. This, together with already available sequence data, indicated that both P1 and p15B had suffered various sequence acquisitions or deletions and sequence amplifications giving rise to mosaics of partially related repeated elements. Data base searches revealed segments of homology in the DNA inversion regions of p15B, e14, and P1 and in tail fiber genes of phages Mu, T4, P2, and lambda. This result suggest that the evolution of phage tail fiber genes involves horizontal gene transfer and that the Min and Pin regions encode tail fiber genes. A functional test proved that the p15B Min region carries a tail fiber operon and suggests that the alternative expression of six different gene variants by Min inversion offers extensive host range variation.  相似文献   

7.
A variety of factors, including phase variation, are involved in the regulation of flagellin gene expression in Salmonella sp. Flagellar-phase variation refers to the alternate expression of two different flagellin genes, H1 and H2. Site-specific inversion of a DNA segment adjacent to the H2 gene is responsible for switching expression. The segment includes the H2 promoter as well as the hin gene, which is required to mediate the inversion. Sequences in this region have homology with the corresponding sequences adjacent to the H1 flagellin gene in Salmonella sp. and the hag flagellin gene in Escherichia coli. The hin gene has also been shown to be homologous to the gin gene, which is found on bacteriophage Mu. To understand gene expression and the origin of these relationships, we have compared the DNA sequence adjacent to all three flagellin genes. The sequence data suggest a mechanism for the evolution of the hin-H2 locus.  相似文献   

8.
H E Huber  S Iida  T A Bickle 《Gene》1985,34(1):63-72
The cin recombinase of bacteriophage P1, a protein that catalyses site-specific DNA inversions, has been identified and its structural gene has been cloned under the control of different promoters. One of the DNA sequences used for the site-specific recombination, cixL, overlaps with the 3' end of the gene, but we show that the presence of this site does not affect cin gene expression from strong promoters. To assay cin activity we have constructed plasmids that carry antibiotic resistance genes within the invertible segment that are transcribed from promoters outside the segment. DNA inversion switches on or off genes for chloramphenicol or kanamycin resistance. These tester plasmids are used to study cin-mediated DNA inversion both in vivo and in vitro.  相似文献   

9.
The recombinase, Piv, is essential for site-specific DNA inversion of the type IV pilin DNA segment in Moraxella lacunata and Moraxella bovis. Piv shows significant homology with the transposases of the IS110/IS492 family of insertion elements, but, surprisingly, Piv contains none of the conserved amino acid motifs of the lambda Int or Hin/Res families of site-specific recombinases. Therefore, Piv may mediate site-specific recombination by a novel mechanism. To begin to determine how Piv may assemble a synaptic nucleoprotein structure for DNA cleavage and strand exchange, we have characterized the interaction of Piv with the DNA inversion region of M. lacunata. Gel shift and nuclease/chemical protection assays, competition and dissociation rate analyses, and cooperativity studies indicate that Piv binds two distinct recognition sequences. One recognition sequence, found at multiple sites within and outside of the invertible segment, is bound by Piv protomers with high affinity. The second recognition sequence is located at the recombination cross-over sites at the ends of the invertible element; Piv interacts with this sequence as an oligomer with apparent low affinity. A model is proposed for the role of the different Piv binding sites of the M. lacunata inversion region in the formation of an active synaptosome.  相似文献   

10.
Characterization and cloning of gene 5 of Bacillus subtilis phage phi 29   总被引:3,自引:0,他引:3  
G Martín  M Salas 《Gene》1988,67(2):193-201
Sequencing of the phi 29 DNA region [open reading frames (ORFs) 12, 11 and 10] between genes 6 and 4 of the mutant ts5(219) showed that a G in the wild-type phage had been changed to an A in the mutant at position 218 of ORF 10 indicating that this ORF corresponds to gene 5. ORF 10 was cloned in plasmid pPLc28 under the control of the PL promoter of phage lambda and, after heat induction of the Escherichia coli cells carrying the recombinant plasmid pGM26, a 12-kDa protein was overproduced, accounting for about 5% of the de novo synthesized protein. Introduction of a nonsense mutation in ORF 10 indicated that the latter codes for the 12-kDa protein. The predicted secondary structure, the hydrophilicity values and the antigenic regions of protein p5 are discussed.  相似文献   

11.
E Bremer  T J Silhavy  G M Weinstock 《Gene》1988,71(1):177-186
Lambda placMu phages are derivatives of bacteriophage lambda that use the transposition machinery of phage Mu to insert into chromosomal and cloned genes. When inserted in the proper fashion, these phages yield stable fusions to the Escherichia coli lac operon in a single step. We have determined the amount of DNA from the c end of phage Mu present in one of these phages, lambda placMu3, and have shown that this phage carries a 3137-bp fragment of Mu DNA. This DNA segment carries the Mu c-end attachment site and encodes the Mu genes cts62, ner+, and gene A lacking 179 bp at its 3' end (A'). The product of this truncated gene A' retains transposase activity and is sufficient for the transposition of lambda placMu. This was demonstrated by showing that lambda placMu derivatives carrying the A am1093 mutation in the A' gene are unable to transpose by themselves in a Su- strain, but their transposition can be triggered by coinfection with lambda pMu507(A+ B+). We have constructed several new lambda placMu phages that carry the A' am1093 gene and the kan gene, which confers resistance to kanamycin. Chromosomal insertions of these new phages are even more stable than those of the previously reported lambda placMu phages, which makes them useful tools for genetic analysis.  相似文献   

12.
13.
14.
15.
The genes coding for the phospholipid degradation enzymes in E. coli, detergent-resistant (DR-) phospholipase A (pldA) and lysophospholipase L2 (pldB), were cloned together on the plasmid pKO1 (Homma, H., Kobayashi, T., Ito, Y., Kudo, I., Inoue, K., Ikeda, H., Sekiguchi, M., & Nojima, S. (1983) J. Biochem. 94, 2079-2081). To study their gene organization, a transducing lambda phage, lambda pldApldB, carrying both the pldA and pldB genes was constructed in vitro from plasmid pKO1. Viable deletion mutants of lambda pldApldB were isolated by EDTA killing, and their deleted DNA regions were determined by electron microscopic analysis of appropriate heteroduplexes. The activities of DR-phospholipase A and lysophospholipase L2 were also measured in lysates of cells infected with the deletion phages. The DNA region essential for the expression of each lipolytic activity was determined. In addition, proteins coded by the bacterial DNA on the plasmids containing the pldApldB region to various extents were detected by the maxicell system. The results showed that the product of the pldB gene is a protein with molecular weight of 40,000. It was also shown that the pldB gene is located at a region about 3 kilobase from the pldA gene.  相似文献   

16.
17.
We have recently reported that part of the chromosomal deoxyribonucleic acid (DNA) of Escherichia coli is associated with the outer membrane fraction and that an outer membrane protein having a molecular weight of 31,000 probably is involved in this association (H. Wolf-Watz and A. Norqvist, J. Bacteriol. 140:43-49, 1979). We have now found that F' merodiploid strains containing two copies of the DNA between bglB and ilv have increased levels of this protein and an increased amount of DNA in their outer membranes. Increased levels of the protein are also found when lambda asn phage, containing at 1.5-megadalton fragment of DNA located to the right of the uncA uncB genes but to the left of oriC, are induced. It therefore seems that this 1.5-megadalton fragment of DNA either codes for or binds to the 31,000-dalton outer membrane protein. Hybridization studies utilizing DNA found to be bound to outer membrane and DNA isolated from a specialized transducing phage lambda asn 132 revealed that at least 5 to 10% of outer membrane DNA has a DNA sequence homologous with a chromosomal segment carried by this oriC-containing phage.  相似文献   

18.
A series of defective lambda transducing phage carrying genes from the lip-leuS region of the Escherichia coli chromosome (min 14 on the current linkage map) has been isolated. The phage defined the gene order as lac---lip-dacA-rodA-pbpA-leuS---gal. These included the structural genes for penicillin-binding protein 2 (pbpA) and penicillin-binding protein 5 (dacA) as well as a previously unidentified cell shape gene that we have called rodA. rodA mutants were spherical and very similar to pbpA mutants but were distinguishable from them in that they had no defects in the activity of penicillin-binding protein 2. The separation into two groups of spherical mutants with mutations that mapped close to lip was confirmed by complementation analysis. The genes dacA, rodA, and pbpA lie within a 12-kilobase region, and represent a cluster of genes involved in cell shape determination and peptidoglycan synthesis. A restriction map of the lip-leuS region was established, and restriction fragments were cloned from defective transducing phage into appropriate lambda vectors to generate plaque-forming phage that carried genes from this region. Analysis of the proteins synthesized from lambda transducing phage in ultraviolet light-irradiated cells of E. coli resulted in the identification of the leuS, pbpA, dacA, and lip gene products, but the product of the rodA gene was not identified. The nine proteins that were synthesized from the lip-leuS region accounted for 57% of its coding capacity. Phage derivatives were constructed that allowed about 50-fold amplification of the levels of penicillin-binding proteins 2 and 5 in the cytoplasmic membrane.  相似文献   

19.
The protein product of the rep gene of Escherichia coli is required for the replication of certain bacteriophage genomes (phi X174, fd, P2) and for the normal replication of E. coli DNA. We have used a specialized transducing phage, lambda p rep+, which complements the defect of rep mutants, to identify the rep protein. The rep protein has been purified from cells infected with lambda p rep+ phage; it has a molecular weight of about 70 000 and appears similar to the protein found in normal cells. Stimulation of phi X174 replicative form DNA synthesis in vitro was observed when highly purified rep protein was supplied to a cell extract derived from phi X-infected E. coli rep cells and supplemented with replicative form DNA. The purified protein has a single-stranded DNA-dependent ATPase activity and is capable of sensitizing duplex DNA to nucleases specific for single-stranded DNA. For this reason we propose the enzyme be called DNA helicase III. We infer that the rep protein uses the energy of hydrolysis of ATP to separate the strands of duplex DNA; the E. coli DNA binding protein need not be present. The rep3 mutant appeared to make a limited amount of active rep protein.  相似文献   

20.
Phase variation: genetic analysis of switching mutants   总被引:50,自引:0,他引:50  
M Silverman  M Simon 《Cell》1980,19(4):845-854
Site-specific inversion of a controlling element is responsible for flagellar phase transition in Salmonella. When a 900 bp DNA sequence is in one configuration, it allows the expression of the H2 gene, a structural gene which codes for the flagellar antigen. When it is in the opposite configuration, the H2 gene is not expressed. A hybrid λ phage containing the invertible control region and the adjacent H2 gene was constructed, and expression of the H2 gene was shown to be regulated by the orientation of the inversion region. Transposon Tn5 insertion derivatives of this hybrid phage were isolated and λH2::Tn5 mutants defective for inversion (H2 switching) were selected and characterized. Two classes of switching phenotypes were observed among the mutants—those which had slightly reduced frequencies of transition from expression of the H2 gene (H2 on) to nonexpression (H2 off) (intermediate class) and those in which the frequency of transition was reduced at least three orders of magnitude (null class). Physical mapping of the Tn5 insertion sites revealed that in all mutants the insertion was located inside the inversion region. Tn5 insertion sites in the null class of mutants defined a region of DNA including approximately 500 bp which was necessary for inversion. Genetic complementation tests showed that these λH2::Tn5 mutants could invert the H2 gene control element if the 500 bp region was introduced in the trans configuration. It is concluded that a gene is located inside the inversion segment and codes for a protein which is required for the inversion event. Furthermore, the two sites at which the crossover event occurred functioned in a cis configuration and were required for inversion. The presence of a gene which is involved in controlling site-specific recombination events may be a general feature of transposon-like elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号