首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the 1970's great strides were made in understanding the mechanism of action of amphotericin B and nystatin: the formation of transmembrane pores was clearly demonstrated in planar lipid monolayers, in multilamellar phospholipid vesicles and in Acholeplasma laidlawii cells and the importance of the presence and of the nature of the membrane sterol was analyzed. For polyene antibiotics with shorter chains, a mechanism of membrane disruption was proposed. However, recently obtained data on unilamellar vesicles have complicated the situation. It has been shown that: membranes in the gel state (which is not common in cells), even if they do not contain sterols may be made permeable by polyene antibiotics, several mechanisms may operate, simultaneously or sequentially, depending on the antibiotic/lipid ratio, the time elapsed after mixing and the mode of addition of the antibiotic, there is a rapid exchange of the antibiotic molecules between the vesicles. Although pore formation is apparently involved in the toxicity of amphotericin B and nystatin, it is not the sole factor which contributes to cell death, since K+ leakage induced by these antibiotics is separate from their lethal action. The peroxidation of membrane lipids, which has been demonstrated for erythrocytes and Candida albicans cells in the presence of amphotericin B, may play a determining role in toxicity concurrently with colloid osmotic effect. On the other hand, it has been shown that the action of polyene antibiotics on cells is not always detrimental: at sub-lethal concentrations these drugs stimulate either the activity of some membrane enzymes or cellular metabolism. In particular, some cells of the immune system are stimulated. Furthermore, polyene antibiotics may act synergistically with other drugs, such as antitumor or antifungal compounds. This may occur either by an increased incorporation of the drug, under the influence of a polyene antibiotic-induced change of membrane potential, for example, or by a direct interaction of both drugs. That fungal membranes contain ergosterol while mammalian cell membranes contain cholesterol, has generally been considered the basis for the selective toxicity of amphotericin B and nystatin for fungi. Actually, in vitro studies have not always borne out this assumption, thereby casting doubt on the use of polyene antibiotics as antifungal agents in mammalian cell culture media.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
N M Witzke  R Bittman 《Biochemistry》1984,23(8):1668-1674
The interactions of sonicated vesicles with the polyene antibiotics amphotericin B, candicidin, mediocidin , and a water-soluble, guanidine derivative of amphotericin B were examined by UV-visible spectroscopy at concentrations below which the polyenes become self-associated. The association constants, Kapp, and the numbers of binding sites per sterol or phospholipid molecule (n) were determined at 30 degrees C and pH 7.4. A single class of binding sites was found, with no evidence of cooperativity. For the binding of mediocidin , amphotericin B, and the guanidine derivative with phosphatidylcholine (PC), PC/cholesterol, and PC/ergosterol vesicles, Kapp was in the range of (1.0-3.0) X 10(6) M-1; Kapp was higher for candicidin-vesicle interaction, reaching 9.0 X 10(6) M-1 with PC/ergosterol vesicles. Binding of the guanidine derivative of amphotericin B to PC vesicles lacking sterol was extensive (n = 0.46); since the other polyenes, which have low aqueous solubilities, had n less than 0.05, positive charges in the mycosamine moiety appear to enhance the extent of polyene antibiotic interaction with the glycerophospholipid head group. Higher values of n (and, therefore, of nKapp ) were found with sterol-containing than with sterol-free vesicles, suggestive of penetration of the polyenes toward the interior of the bilayer when sterol is present. For binding to PC/sterol vesicles, nKapp followed the order of candicidin greater than guanidine derivative of amphotericin B greater than amphotericin B much greater than mediocidin . The values of n and nKapp were appreciably higher for amphotericin B-ergosterol than for amphotericin B-cholesterol interaction in vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
J Bolard  P Legrand  F Heitz  B Cybulska 《Biochemistry》1991,30(23):5707-5715
The inducement of K+ permeability through membranes by the polyene antibiotic amphotericin B (AmB) has been analyzed as a measure of the antibiotic activity. Dose-response curves have been obtained with cholesterol- and ergosterol-containing egg yolk phosphatidylcholine large unilamellar vesicles (LUVs), human erythrocytes, and Saccharomyces cerevisiae cells. Conductance changes induced by AmB in sterol-containing planar bilayer membranes have also been studied. AmB self-association in aqueous buffer was determined by circular dichroism (CD) as a function of the antibiotic concentration. Electronic absorption and CD spectra of AmB were recorded in the presence of LUVs. For given AmB concentrations, the extent of permeability inducement is dependent on the lipid concentration. On the other hand, for cholesterol-containing LUVs or erythrocytes, a critical AmB concentration had to be reached before any permeability is observed. Independent of lipid concentration, this concentration was directly related to antibiotic self-association in the aqueous buffer. The same observation was made for erythrocytes and nystatin. The AmB absorption and CD spectra were totally different for ergosterol- and cholesterol-containing LUVs. Formation of single channels by one-sided addition of AmB could be observed only in ergosterol-containing membranes. These data lead us to propose that the permeability pathways induced by amphotericin B or nystatin, in ergosterol- and in cholesterol-containing membranes, are of different natures. In the latter case the antibiotics are only active, by single-sided addition, in the self-associated form. These findings offer important clues for the design of less toxic derivatives of AmB: they should have a low degree of self-association in water.  相似文献   

4.
The interaction of the polyene antibiotics, amphotericin B, nystatin and filipin with cholesterol-containing single bilayer lipid vesicles has been characterized using gel permeation chromatography and proton magnetic resonance. All three antibiotics bind to vesicles at low concentrations without causing a large amount of vesicle destruction. The strength of binding as determined by gel permeation studies is greater for filipin and amphotericin than for nystatin. Nystatin and amphotericin B at these low concentrations induce a rapid loss of internal vesicle contents consistents consistent with pore formation. Filipin induces no leakage beyond that expected from partial vesicle destruction or general detergent action. At antibiotic levels above 1:1 antibiotic: cholesterol ratios the NMR results show all three antibiotics to cause extensive vesicle destruction. The onset of this behavior, which appears to be independent of the total antibiotic concentraion, indicates a well defined antibiotic : cholesterol interaction stoichiometry. Despite the fact that cholesterol is required for antibiotic activity, the NMR spectra prior to vesicle destruction show no changes indicative of an antibiotic-induced reversal of cholesterol restriction of phosphatidylcholine mobility. The contrast with polyene antibiotic behavior in more extended bilayers is discussed.  相似文献   

5.
The interaction of the polyene antibiotics, amphotericin B, nystatin and filipin with cholesterol-containing single bilayer lipid vesicles has been characterized using gel permeation chromatography and proton magnetic resonance. All three antibiotics bind to vesicles at low concentrations without causing a large amount of vesicle destruction. The strength of binding as determined by gel permeation studies is greater for filipin and amphotericin than for nystatin. Nystatin and amphotericin B at these low concentrations induce a rapid loss of internal vesicle contents consistent with pore formation. Filipin induces no leakage beyond that expected from partial vesicle destruction or general detergent action.At antibiotic levels above 1 : 1 antibiotic : cholesterol ratios the NMR results show all three antibiotics to cause extensive vesicle destruction. The onset of this behavior, which appears to be independent of the total antibiotic concentration, indicates a well defined antibiotic : cholesterol interaction stoichiometry. Despite the fact that cholesterol is required for antibiotic activity, the NMR spectra prior to vesicle destruction show no changes indicative of an antibiotic-induced reversal of cholesterol restriction of phosphatidylcholine mobility. The contrast with polyene antibiotic behavior in more extended bilayers is discussed.  相似文献   

6.
Prostaglandin (PG)-synthestase activity was studied in the cortical, medullary and papillary kidney layers in young rats subjected to prolonged administration of polyene antibiotics (amphotericin B, levorin and nystatin). This activity was markedly increased during the first few hours after the administration of amphotericin B. At later terms a pronounced decline in the enzyme activity was observed. The changes were most prominent in the medullary and papillary layers. The other two antibiotics were less potent. The experimental results have shown that amphotericin B had maximal effect on renal PG-synthetase activity, while the sodium salt of nystatin was least effective.  相似文献   

7.
The effect of four polyene antibiotics and digitonin on photosyntheticelectron transfer by maize mesophyll chloroplasts has been investigated.All five compounds, at concentrations between 0.1 mM and 20mM, inhibited photosystem 2 activity as measured by the photo-reductionof ferricyanide and 2,6-dichlorophenolindophenol from water.Etruscomycin, amphotericin B, and digitonin were more inhibitorythan filipin and nystatin. Photosystem 1 activity was inhibitedby 1 mM concentrations of etruscomycin, amphotericin B, anddigitonin but not by filipin and nystatin. In all cases whereinhibition occurred, it was temperature dependent. The inhibition of photosystem 1 activity could be relieved byplastocyanin. Etruscomycin and digitonin, at concentrationsof 0.5 mM and above, caused disintegration of the chloroplasts,and this disintegration was accompanied by a two- to three-foldincrease in photosystem 1 activity in the presence of plastocyanin.It is concluded that the action of polyene antibiotics resultsin the release of plastocyanin from its site in the photosyntheticelectron transfer chain. The results are discussed in termsof the abilities of polyene antibiotics and digitonin to formcomplexes with sterols.  相似文献   

8.
The permeability of artificial unilamellar vesicles and of plasma membrane vesicles from homogenized yeast in aqueous solutions of polyene antibiotics (amphotericin B and lucensomycin) was studied by measuring proton leakage by a pH-stat method. Micromolar concentrations of amphotericin B induced a remarkable proton efflux from the vesicles. Lucensomycin exerted similar effects only at 100 times higher concentrations. The latter antibiotic, at concentrations one order of magnitude lower than those necessary to induce a detectable proton efflux, seemed to protect the vesicles from the subsequent permeabilizing action of amphotericin B.  相似文献   

9.
The biosynthesis of the aromatic polyene macrolide antibiotic candicidin, produced by Streptomyces griseus IMRU 3570, begins with a p-aminobenzoic acid (PABA) molecule which is activated to PABA-CoA and used as starter for the head-to-tail condensation of four propionate and 14 acetate units to produce a polyketide molecule to which the deoxysugar mycosamine is attached. Using the gene coding for the PABA synthase ( pabAB) from S. griseusIMRU 3570 as the probe, a 205-kb region of continuous DNA from the S. griseus chromosome was isolated and partially sequenced. Some of the genes possibly involved in the biosynthesis of candicidin were identified including part of the modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport, and regulatory proteins. The regulatory mechanisms involved in the production of candicidin, such as phosphate regulation, were studied using internal probes for some of the genes involved in the biosynthesis of the three moieties of candicidin (PKS, aromatic moiety and amino sugar). mRNAs specific for these genes were detected only in the production medium (SPG) but not in the SPG medium supplemented with phosphate or in the inoculum medium, indicating that phosphate represses the expression of genes involved in candicidin biosynthesis. The modular architecture of the candicidin PKS and the availability of the PKSs involved in the biosynthesis of three polyene antibiotics (pimaricin, nystatin, and amphotericin B) shall make possible the creation of new, less toxic and more active polyene antibiotics through combinatorial biosynthesis and targeted mutagenesis.  相似文献   

10.
Amphotericin B is used for the treatment of systemic mycoses and visceral leishmaniasis. The objective of our study was to evaluate the impact of catalase, ascorbic acid and ketoconazole on the amphotericin B toxicity towards Leishmania promastigotes membrane by two flow cytometric tests, the membrane potential assay using a cationic dye, [DiOC5(3)], and the membrane permeability test using propidium iodide. The collapse of membrane potential appeared at amphotericin B concentrations weaker than those assessed by the membrane permeability test. The binding of amphotericin B to membrane sterol was not modified by catalase or ascorbic acid whereas amphotericin B-induced growth inhibition could be modulated by these products. The permeabilizing effect of amphotericin B on parasite membrane was strongly reduced in the presence of ketoconazole. These results confirmed the pore hypothesis of amphotericin B action and suggested that flow cytometric methods constituted a valuable alternative to conventional methods for assessing the effect of drugs on cellular membrane and evaluating parasite susceptibility to polyene antibiotics.  相似文献   

11.
The properties of ion channels formed in membranes by polyene antibiotics of various chemical structure of hydrophilic and hydrophobic chains are investigated. Small differences in a hydrophylic chain with a changed number of hydroxyl and carbonyl groups significantly influence the values of conductivity and selectivity of the polyene channel. The greater number of double bonds in a hydrophobic part of polyene molecules leads to the higher biological activity of antibiotics. Measurement of anion–cationic selectivity of the channels formed by polyenes showed that anionic selectivity, as well as conductivity of channels, decreases among antibiotics: amphotericin B, nystatin, candidin, mycoheptin, and levorin. The study of physical and chemical properties of the single and hybrid ion channels on the bilayer lipid membranes in the presence of polyene antibiotics makes possible to create a theoretically reasonable recommendation for the targeted synthesis of new antibiotics with the desired properties.  相似文献   

12.
The polyene antibiotic candicidin is a potent membrane active agent, the action of which can be inhibited by the presence of certain ions. The destruction of the selective permeability of yeast membranes by candicidin allows small molecules to leak into the environment. Loss of intracellular potassium ions inhibits yeast glycolysis. This inhibition may be reversed by extracellular concentrations of potassium or ammonium ions. Monovalent ions did not prevent antibiotic absorption or protect yeast growth from the action of the antibiotic. Divalent ions did not protect yeast glycolysis from the action of candicidin, but were able to reduce antibiotic-induced membrane damage and allowed yeast growth in the presence of antibiotic. It is suggested that divalent ions may interact with membrane sterols creating steric hindrance to subsequent candicidin absorption.  相似文献   

13.
104 mutants resistant to nystatin were isolated after UV-treatment of two haploid marked strains of Saccharomyces cerevisiae. The analysis of resistance to three polyene antibiotics allowed to determine 8 phenotype classes of mutants including those resistant to nystatin but in various combinations showing hypersensitivity to levorin and (or) amphotericin B. The analysis of UV absorption spectra of sterolic extracts prepared from cells of different mutants showed that similar quality changes in sterol composition could be associated both with polyresistant an supersensitive phenotype. New type of mutants resistant to nystatin and supersensitive to levorin and (or) amphotericin B seems to be promising for studies on the mechanisms of action of polyene antibiotics, the bases of resistance to them and also in consideration of the possibility to increase the efficiency of antimycotic antibiotic therapy.  相似文献   

14.
The effect of cholesterol incorporation upon amphotericin B and nystatin susceptibility of lecithin liposome systems containing various fatty acids has been studied. Cholesterol was shown to: 1) confer sensitivity to low concentrations of amphotericin B in liposomes derived from egg lecithin, and 2) suppress the amphotericin B and nystatin-induced response in liposomes derived from dipalmitoyl or distearoyl lecithins. This clear cut difference cannot be explained by mechanisms of drug action so far presented. They are discussed in connection with the possibility that susceptibility to these polyene antibiotics is related to the over-all state of the membrane organization, in particular to the over-all conformation of membrane components.  相似文献   

15.
Cation conductance and efflux induced by polyene antibiotics amphotericin B (AMB), amphotericin B methyl ester (AME), nystatin, mycoheptin, and levorin on frog isolated skeletal muscle fibers and whole sartorius muscles were investigated. Conductance was measured under current-clamp conditions using a double sucrose-gap technique. Cation efflux was studied using flame emission photometry. Some new data were obtained concerning the effects of levorin and mycoheptin on biological membranes. The power dependence of polyene-induced cation transport on antibiotic concentration in muscle membrane was lower than that in bilayers. The decline in the equilibrium conductance caused by polyene removal (except for levorin) was very fast. There was reverse temperature dependence of AMB- and nystatin-induced conductances. Both induced conductance and efflux values demonstrated a correlation with the order of antifungal activities: levorin > AMB, mycoheptin > AME > nystatin, except for AME, which was more potent on yeastlike cells. These effects were interpreted in terms of possible differences in the kinetics of channel formation in biological and model membranes and in light of the role of nonconducting antibiotic forms in biological membranes.  相似文献   

16.
The permeability of egg yolk lecithin (EYL) vesicles to Pr3+ has been measured by 31P nuclear magnetic resonance (nmr) spectroscopy. Measurable Pr3+ leakage into the internal aqueous compartment of EYL vesicles at ambient (21 degrees C) temperature required the presence of small (7--10 mol%) amounts of dicetyl phosphate (DCP). The permeability of DCP-containing vesicles is decreased by incorporation of sterol (cholesterol greater than ergosterol approximately 5.6-dihydroergosterol greater than zymosterol) into the lipid bilayer. Addition of the polyene macrolide antibiotic, nystatin, to DCP-containing EYL vesicles with and without sterol resulted in increased Pr3+ permeability at the three temperatures studied (21--37.5 degrees C). Permeability changes observed upon addition of nystatin to sterol-impregnated, DCP-containing vesicles varied with sterol structure: ergosterol approximately 5,6-dihydroergosterol greater than cholesterol approximately zymosterol. These results are compared with other polyene macrolide induced permeability changes on model and natural membrane systems. Permeability changes induced by nystatin in sterol-free EYL vesicles were generally greater than for comparable sterol-containing vesicles. This is attributed to a nonspecific interaction of the antibiotic with the latter vesicles.  相似文献   

17.
The polyene antibiotics, including nystatin, pimaricin, amphotericin, and candicidin, comprise a family of very valuable antifungal polyketide compounds, and they are typically produced by soil actinomycetes. Previously, using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, Pseudonocardia autotrophica KCTC9441 was determined to contain genes potentially encoding polyene biosynthesis. Here, sequence information of an approximately 125.7-kb contiguous DNA region in five overlapping cosmids isolated from the P. autotrophica KCTC9441 genomic library revealed a total of 23 open reading frames, which are presumably involved in the biosynthesis of a nystatin-like compound tentatively named NPP. The deduced roles for six multi-modular polyketide synthase (PKS) catalytic domains were found to be highly homologous to those of previously identified nystatin biosynthetic genes. Low NPP productivity suggests that the functionally clustered NPP biosynthetic pathway genes are tightly regulated in P. autotrophica. Disruption of a NPP PKS gene completely abolished both NPP biosynthesis and antifungal activity against Candida albicans, suggesting that polyene-specific genome screening may constitute an efficient method for isolation of potentially valuable previously identified polyene genes and compounds from various rare actinomycetes widespread in nature.  相似文献   

18.
Sodium-22 efflux was measured in multilamellar liposomes, exposed to one of the two polyene antibiotics amphotericin B or nystatin. Polyene mediated 22Na transport progressively rises with membrane sterol concentrations up to about 20 mol %, but falls with higher cholesterol concentrations. The polyene induced 22Na movement in cholesterol rich liposomes could be 'restored' by the addition of either dibucaine or propranolol (two local anesthetics) to the aqueous solution. These observations are interpreted in terms of the model of De Kruijff and Demel (Biochim. Biophys. Acta, 339, 57-70, 1974). In this model, nystatin and amphotericin B first complex with cholesterol and then these complexes aggregate to form transmembrane channels. It is here proposed that the aggregation of these complexes is inhibited by a high cholesterol content (decreased membrane fluidity) but that the two local anesthetics, by disrupting phospholipid-sterol interactions (increased membrane fluidity), can 'restore' this process of aggregation.  相似文献   

19.
Wide differences exist among the polyene antibiotics, nystatin, rimocidin, filipin, pimaricin, and amphotericin B, with reference to steroid interference with their antifungal activities against Candida albicans. Of the numerous steroids tested, ergosterol was the only one which effectively antagonized the antifungal activity of all five polyene antibiotics. The antifungal activities of nystatin and amphotericin B were the least subject to vitiation by the addition of steroids other than ergosterol, and those of filipin, rimocidin, and pimaricin were the most sensitive to interference. Attempts to delineate the structural requirements of steroids possessing polyene-neutralizing activity in growing cultures of C. albicans are discussed. The ultraviolet absorbance of certain antibiotic steroid combinations was also studied.  相似文献   

20.
The kinetics of the hemolysis induced by filipin is of the damage type, indicating the formation of large nonselective perforations of erythrocyte membranes. The process is relatively independent of the ionic composition of the incubation medium, and the differences between the hemolysis induced by filipin in pig and human erythrocytes are not significant. In a sucrose medium, filipin-induced hemolysis is inhibited in humans, whereas it is stimulated in pig erythrocytes. It is suggested that low ionic strength is the reason for the different modifications of complexation of filipin in pig and human erythrocyte membranes in a sucrose medium. The kinetics of the hemolysis induced in pig erythrocytes by amphotericin B and nystatin is of the permeability type, indicating the formation of selective channels in erythrocyte membranes and colloid osmotic hemolysis. The rate of the hemolysis, which is high in a KCl medium, is decreased in all the other media tested (CaCl2, MgCl2, potassium phosphate buffer, K2SO4, sucrose), although there are no changes in the kinetics of hemolysis. The results are interpreted as the formation of highly selective channels at a low concentration of the antibiotics. At increasing concentrations, channels of decreasing selectivity occur. The resistances of pig erythrocytes to amphotericin B and nystatin are lower than those of human erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号