首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xu Y  Du W  Liu D  Zeng J 《Biotechnology letters》2003,25(15):1239-1241
A new enzymatic route for biodiesel production from soybean oil was developed using methyl acetate as a novel acyl acceptor. Novozym 435 (immobilized Candida antarctica lipase) gave the highest methyl ester (ME) yield of 92%. The optimum conditions of the transesterification were 30% enzyme based on oil weight; a molar ratio of methyl acetate/oil of 12:1; temperature 40 °C and reaction time 10 h. Since no glycerol was produced in the process, this method is very convenient for recycling the catalyst and by-product triacetylglycerol showed no negative effect on the fuel property.  相似文献   

2.
桑黄是一类应用广泛的药用真菌,桑黄多酚具有抗氧化、抗炎和降糖作用。本研究中的杨树桑黄属于桑黄中重要且能栽培的一种。本研究采用深共熔溶剂(deep eutectic solvent,DES)从栽培杨树桑黄子实体中提取多酚类化合物,考察了不同提取条件对提取率的影响。采用氯化胆碱与尿素组成的DES体系对多酚进行提取,并进一步采用响应面法对提取条件进行优化,获得最佳提取工艺参数为21 min、80 ℃、料液比1:260 g/mL。在此条件下,多酚的提取率高达(23.17±0.88) mg/g,远高于传统方法(12.45±1.88) mg/g。最优条件提取的多酚显示了很强的DPPH和ABTS的清除能力。由此可见,采用DES法从杨树桑黄子实体中提取酚类化合物比传统方法更有效。  相似文献   

3.
4.
5.
6.
A series of polymer electrolytes composed of corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LITFSI) and deep eutectic solvent (DES) were fabricated by solution casting technique. The DES was synthesized from a mixture of choline chloride and urea at a molar ratio of 1:2. The addition of DES is crucial in enhancing the room temperature ionic conductivity by increasing the amorphous elastomeric phase in CS:LITFSI matrix. The ionic transport mechanism is improved and appreciable amount of ion conducting polymer electrolytes is produced. The highest ionic conductivity achieved for the polymer electrolyte composition CS:LiTFSI:DES (14 wt.%:6 wt.%:80 wt.%) is 1.04 × 10−3 S cm−1. The anomalies that were observed with the addition of DES upon formation of neutral ion multiples were visually revealed by the SEM micrographs. The possible dipole-dipole interaction between the constituents was visualized by the FTIR spectroscopy upon change in cage peaks.  相似文献   

7.
8.
A solvent engineering strategy was applied to the lipase-catalyzed methanolysis of triacylglycerols for biodiesel production. The effect of different pure organic solvents and co-solvent mixtures on the methanolysis was compared. The substrate conversions in the co-solvent mixtures were all higher than those of the corresponding pure organic solvents. Further study showed that addition of co-solvent decreased the values of |log Pinterface − log Psubstrate| and thus led to a faster reaction. The more the values of |log Pinterface − log Psubstrate| decreased, the faster the reaction proceeded and the higher the conversion attained. Different co-solvent ratio was further investigated. The co-solvent mixture of 25% t-pentanol:75% isooctane (v/v) was optimal, with which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated. There was no obvious loss in lipase activity even after being repeatedly used for 60 cycles (720 h) with this co-solvent mixture as reaction medium. Other lipases and lipase combinations can also catalyze methanolysis in this co-solvent mixture. Furthermore, other vegetable oils were also explored for biodiesel production in this co-solvent mixture and it had been found that this co-solvent mixture media has extensive applicability.  相似文献   

9.
10.
Papain kinetics in the presence of a water-miscible organic solvent   总被引:5,自引:0,他引:5  
The effects of various concentrations of a water-miscible organic solvent [a 7:3 (v/v) mixture of N, N dimethylformamide and dimethylsulfoxide] on the kinetics of papain have been investigated. The parameters k(cat) and K(m) for the amidase and esterase activity of papain using N-alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA) and N-alpha-benzoyl-L-arginine ethyl ester (BAEE) as substrates were determined. For both types of activity, k(cat) initially increased (up to about 15% solvent), and then decreased with increasing concentrations of organic solvent. In contrast, K(m) increased sharply with the organic solvent concentration. Active site titration at 0 and 50% solvent indicated no change in the amount of active enzyme. Fluorometric measurements of the emission spectrum of papain did not indicate any major conformational changes with increasing concentrations of organic solvent.  相似文献   

11.
Infection of Rhizobium-nodulated Phaseolus vulgaris by the southern bean mosaic virus (SBMV) markedly decreased the growth and nodulation of plants. Exogenous applications of salicylic acid (SA) at concentrations ≥10 μM further decreased growth and nodulation of virus-infected (V) plants. Only SA concentration of 5 μM in the solution improved the growth, nodulation, chlorophyll concentration and the catabolism of ureide in leaves of V plants. The spray of leaves with 2 mM propyl gallate (+Pg) decreased growth, nodulation as well as the chlorophyll and leaf ureide concentrations in V plants, regardless of the concentration of SA at which plants were grown. Ultrastructural damages in leaf cells caused by SBMV were also enhanced in V+Pg plants. The massive proliferation of virus particles and the presence of virus crystalline arrays within symbiosomes of nodules in V+Pg plants were attributed to proliferation of branched plasmodesmata in leaf vascular-parenchyma cell walls that facilitated virus movement. Virus particles were never observed in leaf and nodule tissues of V plants not sprayed with Pg. Exogenous applications of SA hindered while Pg increased the symbiotic performance of H plants, pointing out the complexity to be addressed in breeding for virus resistance in Rhizobium-nodulated beans.  相似文献   

12.
13.
Enzymatic production of methyl esters (biodiesel) by methanolysis of palm oil in presence and absence of organic solvent was investigated using Candida antarctica lipase immobilized on acrylic resin as a biocatalyst. Although, at least molar equivalent of methanol (methanol-palm oil ratio 3:1) is required for the complete conversion of palm oil to methyl esters, lipase catalyzed methanolysis of palm oil in absence of organic solvent was poisoned by adding more than 1/3 molar equivalent of methanol. The use of polar organic solvents prevented the lipase to be poisoned in methanolysis with a molar equivalent of methanol, and tetrahydrofuran (THF) was found to be the most effective. The presence of water in methanolysis of palm oil both in presence and absence of THF inhibited the reaction rate but this inhibition was considerably low in THF containing system. The palm oil-lipase (w/w) ratio significantly influenced the activity of lipase and the optimal ratio in presence and absence of THF was 100 and 50, respectively.  相似文献   

14.
Conversion of lignocellulosic biomass to fuels and chemicals has attracted immense research and development around the world. Lowering recalcitrance of biomass in a cost-effective manner is a challenge to commercialize biomass-based technologies. Deep eutectic solvents (DESs) are new ‘green' solvents that have a high potential for biomass processing because of their low cost, low toxicity, biodegradability, easy recycling and reuse. This article discusses the properties of DESs and recent advances in their application for lignocellulosic biomass processing. The effectiveness of DESs in hydrolyzing lignin-carbohydrate complexes, removing lignin/hemicellulose from biomass as well as their effect on biomass deconstruction, crystallinity and enzymatic digestibility have been discussed. Moreover, this review presents recent findings on the compatibility of natural DESs with enzymes and microorganisms.  相似文献   

15.
Neurodegenerative disorders are a class of diseases that have been linked to apoptosis induced by elevated levels of reactive oxygen species (ROS). ROS activates the apoptotic cascade through mitochondrial dysfunction and damage to lipids, proteins and DNA. Recently, fruit and tea-derived polyphenols have been found to be beneficial in decreasing oxidative stress and increasing overall health. Further, polyphenols including epigallocatechin gallate (EGCG) have been reported to inhibit apoptotic signaling and increase neural cell survival. In an effort to better understand the beneficial properties associated with polyphenol consumption, the aim of this study was to explore the neuroprotective effects of EGCG, methyl gallate (MG), gallic acid (GA) and N-acetylcysteine (NAC) on H2O2-induced apoptosis in PC12 cells and elucidate potential protective mechanisms. Cell viability data demonstrates that MG and NAC pre-treatments significantly increase viability of H2O2-stressed cells, while pre-treatments with EGCG and GA exacerbates stress. Quantitation of apoptosis and mitochondrial membrane potential shows that MG pre-treatment prevents mitochondria depolarization, however does not inhibit apoptosis and is thus evidence that MG can inhibit mitochondria-mediated apoptosis. Subsequent analysis of DNA degradation and caspase activation reveals that MG inhibits activation of caspase 9 and has a partial inhibitory effect on DNA degradation. These findings confirm the involvement of both intrinsic and extrinsic apoptotic pathways in H2O2-induced apoptosis and suggest that MG may have potential therapeutic properties against mitochondria-mediated apoptosis.  相似文献   

16.
Summary Human tumor cell lines, derived from cancers of the colon, ovary, and cervix, were grown in liquid tissue culture media and media made semisolid with agar (Bacto & deoxycholate lactose agar), agarose [LE, ME, Sea Plaque and Sea Prep (15/45)], and methyl cellulose. The effects of each agent on overall cell proliferation and rate of overall cell proliferation were examined. The agents, used to make media semisolid, were observed to inhibit or, in some cases, enhance cell growth in a fashion that was characteristic of individual cell lines. These phenomena may be of consequence to the optimization of nutrient media for primary tumor cell preparations. This work was supported by the Veteran's Administration.  相似文献   

17.
The behaviour of Bactrocera cacuminata (Hering) in wind varied according to the concentration of methyl eugenol (0, 95, 327 and 500 μg m?3, respectively). General locomotor activity (as measured by mean distance moved in 5 min, regardless of direction) was not significantly different in the first two treatments but was significantly lower in the others. Most flies in the fourth treatment did not move more than one body length. In the first two treatments, the rate and pattern of movement of most flies was basically similar, with walking in tortuous paths interspersed with short flights and usually no obvious bias in direction. However, 32% of flies in the second treatment did move in a biased direction, achieving upwind anemotaxis of at least 400 mm, but only 2–8% did so in the other conditions. Flies moved up a concentration gradient to a source of methyl eugenol in still air when released at a distance of 100, 150 or 200 mm. With one exception, no more than 40% did this within 3 min of release (whether or not the olfactory stimulus was augmented by a visual one). However, 77% responded when released 100 mm from a combined olfactory and visual stimulus. Visual augmentation of an olfactory stimulus may also be responsible for far fewer flies flying out of the vicinity at distances up to 150 mm, but not 200 mm.  相似文献   

18.
The changes in thermoluminescence (TL) signals induced by short-term ozone exposure of leaves are characterized by a down-shift of the peak-temperature of the TLB-band and an increase of a TL band at 55°C. We investigated the relationship of these changes to photosystem 2 (PS2) photochemistry. The changes were not only detectable in the presence of ozone, but also after irradiation of dark-adapted leaves and after aging of irradiated detached leaf segments. The opposite effect on TL, an up-shift of the peak-temperature of the B-band and the decrease of the intensity of the band at 55°C were found after infiltration of leaves with nigericin, antimycin A, and diphenyleneiodonium chloride (DPI). Propyl gallate down-shifted the peak-temperature of the B-band. 2,5-dimethyl-1,4-benzoquinone up-shifted the peak-temperature of the B-band and decreased the intensity of the 55°C band. The intensity of the 55°C band did not change significantly in the presence of oxygen in comparison to that in nitrogen atmosphere. It decreased with time of dark adaptation (50% intensity was observed after 3 h of dark adaptation at room temperature), however, it was reactivated to its initial value (at 5 min of dark adaptation) after 1 single-turnover flash. The 55°C band was not significantly changed in the presence of DCMU. Thus the ozone-induced band at 55°C is assigned to charge recombination in PS2. Changes in the electron transport chain at the acceptor side of PS2, probably related to the cyclic electron transport around photosystem 1 and/or chlororespiration, could play an important role in the increase of the 55°C band and the down-shift of the B-band. The changes at the acceptor side indicated by TL can be an ex pression of a physiological regulatory mechanism functional under stress conditions.  相似文献   

19.
Partial sequences of the form I (cbbL) and form II (cbbM) of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit genes were obtained from the brine and interface of the MgCl2-dominated deep hypersaline anoxic basin Discovery. CbbL and cbbM genes were found in both brine and interface of the Discovery Basin but were absent in the overlying seawater. The diversity of both genes in the brine and interface was low, which might caused by the extreme saline conditions in Discovery of approximately 5 M MgCl2. None of the retrieved sequences were closely related to sequences deposited in the GenBank database. A phylogenetic analysis demonstrated that the cbbL sequences were affiliated with a Thiobacillus sp. or with one of the RuBisCO genes from Hydrogenovibrio marinus. The cbbM sequences clustered with thiobacilli or formed a new group with no close relatives. The results implicate that bacteria with the potential for carbon dioxide fixation and chemoautotrophy are present in the Discovery Basin. This is the first report demonstrating that RuBisCO genes are present under hypersaline conditions of 5 M MgCl2.  相似文献   

20.
Summary In an attempt to increase productivity, the effects of the elicitors methyl jasmonate (MJ) and salicylic acid (SA) on the production of bilobalide (B), ginkgolide A (GA), and ginkgolide B (GB) were studied in cell suspension cultures of Ginkgo biloba. MJ treatments increased the amounts of B, GA, and GB, concomitant with a slight decrease in cell growth. After treatment of 0.01 mM MJ, levels of GA and GB increased 4.3-and 8.2-fold over controls by 12 h and declined after 24h. The 1.0mM MJ treatment produced a maximal release of B after 12h of exposure and increased the concentration of B in the culture medium up to 6.25-fold compared with the controls. Treatment with 1.0mM SA transiently enhanced GA and GB production up to 3.1-and 6.1-fold, respectively, compared with the control. However, treatment 1.0 mM SA did not have a significant effect on B production. When treated with 0.01 mM SA, the level of B in the cells was increased 5.4-fold over controls by 12h and declined after 24h. The concentrations and exposure times of both MJ and SA were factors that strongly affected the production of B, GA, and GB. The results from this study suggest that MJ and SA directly or indirectly increased the production of B, GA, and GB in cells, and stimulated the release of these metabolites into the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号