首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory assessment and the biomechanical analysis of chest and abdomen motion during breathing can be carried out using motion capture systems. An advantage of this methodology is that it allows analysis of compartmental breathing volumes, thoraco-abdominal patterns, percentage contribution of each compartment and the coordination between compartments. In the literature, mainly, two marker models are reported, a full marker model of 89 markers placed on the trunk and a reduced marker model with 32 markers. However, in practice, positioning and post-process a large number of markers on the trunk can be time-consuming. In this study, the full marker model was compared against the one that uses a reduced number of markers, in order to evaluate (i) their capability to obtain respiratory parameters (breath-by-breath tidal volumes) and thoracoabdominal motion pattern (compartmental percentage contributions, and coordination between compartments) during quiet breathing, and (ii) their response in different groups such as trained and untrained, male and female.Although tests revealed strong correlations of the tidal volume values in all the groups (R2 > 0.93), the reduced model underestimated the trunk volume compared with the 89 marker model. The highest underestimation was found in trained males (bias of 0.43 L). The three-way ANOVA test showed that the model did not influence the evaluation of compartmental contributions and the 32 marker model was adequate to distinguish thoracoabdominal breathing pattern in the studied groups.Our findings showed that the reduced marker model could be used to analyse the thoracoabdominal motion in both trained and untrained populations but performs poorly in estimating tidal volume.  相似文献   

2.
To determine the sensitivity of pulmonary resistance (RL) to changes in breathing frequency and tidal volume, we measured RL in intact anesthetized dogs over a range of breathing frequencies and tidal volumes centering around those encountered during quiet breathing. To investigate mechanisms responsible for changes in RL, the relative contribution of airway resistance (Raw) and tissue resistance (Rti) to RL at similar breathing frequencies and tidal volumes was studied in six excised, exsanguinated canine left lungs. Lung volume was sinusoidally varied, with tidal volumes of 10, 20, and 40% of vital capacity. Pressures were measured at three alveolar sites (PA) with alveolar capsules and at the airway opening (Pao). Measurements were made during oscillation at five frequencies between 5 and 45 min-1 at each tidal volume. Resistances were calculated by assuming a linear equation of motion and submitting lung volume, flow, Pao, and PA to a multiple linear regression. RL decreased with increasing frequency and decreased with increasing tidal volume in both isolated and intact lungs. In isolated lungs, Rti decreased with increasing frequency but was independent of tidal volume. Raw was independent of frequency but decreased with tidal volume. The contribution of Rti to RL ranged from 93 +/- 4% (SD) with low frequency and large tidal volume to 41 +/- 24% at high frequency and small tidal volume. We conclude that the RL is highly dependent on breathing frequency and less dependent on tidal volume during conditions similar to quiet breathing and that these findings are explained by changes in the relative contributions of Raw and Rti to RL.  相似文献   

3.
Respiratory inductive plethysmography provides a noninvasive method of measuring breathing patterns. Calibration of respiratory inductive plethysmography requires calculation of gain factors for ribcage and abdomen transducers utilizing 2 breathing patterns with different ribcage and abdomen contributions and tidal volume measured by either spirometry or integrated pneumotachography. The purpose of this study was to determine if respiratory inductive plethysmography can be calibrated to provide accurate measurements during quiet and active sleep in lambs. We used a least squares linear regression calibration technique with breaths selected from quiet sleep and active sleep to calculate gain factors in 6 tracheostomized lambs. Validation of gain factors was performed by comparing tidal volumes obtained simultaneously by respiratory inductive plethysmography and pneumotachography during quiet sleep and active sleep. Tidal volume differences between respiratory inductive plethysmography and pneumotachography on validation runs of 15 consecutive breaths each revealed 90% of validation breaths within +/- 20% during quiet sleep and 82% of validation breaths within +/- 20% during active sleep. These data provide evidence that respiratory inductive plethysmography can be calibrated to allow breathing pattern measurement during sleep.  相似文献   

4.
Upper airway unidirectional breathing, nose in and mouth out, is used by panting dogs to facilitate heat removal via water evaporation from the respiratory system. Why some humans instinctively employ the same breathing pattern during respiratory distress is still open to question. We hypothesized that 1) humans unconsciously perform unidirectional breathing because it improves breathing efficiency, 2) such an improvement is achieved by bypassing upper airway dead space, and 3) the magnitude of the improvement is inversely proportional to the tidal volume. Four breathing patterns were performed in random order in 10 healthy volunteers first with normal breathing effort, then with variable tidal volumes: mouth in and mouth out (MMB); nose in and nose out (NNB); nose in and mouth out (NMB); and mouth in and nose out (MNB). We found that unidirectional breathing bypasses anatomical dead space and improves breathing efficiency. At tidal volumes of approximately 380 ml, the functional anatomical dead space during NMB (81 +/- 31 ml) or MNB (101 +/- 20 ml) was significantly lower than that during MMB (148 +/- 15 ml) or NNB (130 +/- 13 ml) (all P < 0.001), and the breathing efficiency obtained with NMB (78 +/- 9%) or MNB (73 +/- 6%) was significantly higher than that with MMB (61 +/- 6%) or NNB (66 +/- 3%) (all P < 0.001). The improvement in breathing efficiency increased as tidal volume decreased. Unidirectional breathing results in a significant reduction in functional anatomical dead space and improvement in breathing efficiency. We suggest this may be the reason that such a breathing pattern is preferred during respiratory distress.  相似文献   

5.
Does rib cage-abdominal paradox signify respiratory muscle fatigue?   总被引:3,自引:0,他引:3  
Studies suggesting that abnormal motion of the rib cage (RC) and abdomen (Ab) may indicate respiratory muscle fatigue have not separated the influence of respiratory load from that of fatigue in its pathogenesis. We hypothesized that abnormalities on RC-Ab motion are primarily related to increased load rather than fatigue. We tested this hypothesis in subjects breathing against resistive loads while maintaining 30 and 60% of maximum mouth pressure (Pmmax). RC-Ab asynchrony and paradox and the degree of variation in compartmental contribution to tidal volume were measured by inductive plethysmography and quantitated by the Konno-Mead method of analysis. Comparing measurements of base line and 30 and 60% of Pmmax indicated that the degree of asynchrony, paradox, and variation in compartmental contribution were significantly related to the level of the load; significant abnormalities were observed at even 30% of Pmmax, a target pressure that can be sustained indefinitely. In another group of subjects, fatigue was induced by sustaining 60% of Pmmax to the limits of tolerance. Indexes of abnormal RC-Ab motion increased from base line during the 1st min of loaded breathing but displayed no progression from the beginning to the end of the fatigue run. Immediately on discontinuation of the load, the indexes returned to levels similar to base line despite persistence of the fatigue state. These results in healthy subjects breathing against severe resistances indicate that RC-Ab asynchrony and paradox and variation in compartmental contribution to tidal volume are predominantly due to increases in respiratory load rather than muscle fatigue.  相似文献   

6.
Using magnetic resonance imaging (MRI) in conjunction with synchronized spirometry we analyzed and compared diaphragm movement during tidal breathing and voluntary movement of the diaphragm while breath holding. Breathing cycles of 16 healthy subjects were examined using a dynamic sequence (77 slices in sagittal plane during 20 s, 1NSA, 240x256, TR4.48, TE2.24, FA90, TSE1, FOV 328). The amplitude of movement of the apex and dorsal costophrenic angle of the diaphragm were measured for two test conditions: tidal breathing and voluntary breath holding. The maximal inferior and superior positions of the diaphragm were subtracted from the corresponding positions during voluntary movements while breath holding. The average amplitude of inferio-superior movement of the diaphragm apex during tidal breathing was 27.3+/-10.2 mm (mean +/- SD), and during voluntary movement while breath holding was 32.5+/-16.2 mm. Movement of the costophrenic angle was 39+/-17.6 mm during tidal breathing and 45.5+/-21.2 mm during voluntary movement while breath holding. The inferior position of the diaphragm was lower in 11 of 16 subjects (68.75 %) and identical in 2 of 16 (12.5 %) subjects during voluntary movement compared to the breath holding. Pearson's correlation coefficient was used to demonstrate that movement of the costophrenic angle and apex of the diaphragm had a linear relationship in both examined situations (r=0.876). A correlation was found between the amplitude of diaphragm movement during tidal breathing and lung volume (r=0.876). The amplitude of movement of the diaphragm with or without breathing showed no correlation to each other (r=0.074). The movement during tidal breathing shows a correlation with the changes in lung volumes. Dynamic MRI demonstrated that individuals are capable of moving their diaphragm voluntarily, but the amplitude of movement differs from person to person. In this study, the movements of the diaphragm apex and the costophrenic angle were synchronous during voluntary movement of the diaphragm while breath holding. Although the sample is small, this study confirms that the function of the diaphragm is not only respiratory but also postural and can be voluntarily controlled.  相似文献   

7.
Chest wall distortion (inward motion of the rib cage on inspiration) has been found recently to reduce the tidal volume during active sleep in the neonatal period. To determine some of the factors that relate to the chest wall distortion and the decreased tidal volume seen in active sleep, a quantification of the phase differences between the movements of the chest wall and those of the abdominal wall, and of the relation of their phase differences to tidal volume was performed on data obtained before and during carbon dioxide stimulation in 15 newborn infants sleeping in the prone position. In quiet sleep, the breathing movements were congruent and regular, and the tidal volume and the mean inspiratory flow increased during carbon dioxide stimulation. In active sleep during exposure to carbon dioxide, the chest wall distortion decreased, the breathing movements were incongruent and the degree of the chest wall distortion was negatively correlated with the tidal volume, while the tidal volume and the mean inspiratory flow was increased. Chest wall distortion did not appear in quiet sleep and was decreased in active sleep in spite of increased ventilation during CO2 stimulation. This study favours the idea that chest wall distortion is caused by a well regulated change in neuromuscular activity and not by the strength of diaphragmatic movements overcoming the mechanical stability of the rib cage.  相似文献   

8.
We monitored the steady-state ventilatory responses of anesthetized cats to increases in lung volume produced by expiratory threshold loads (ETL) to study the roles of peripheral and central neural mechanisms in controlling respiration at elevated lung volumes. Application of an ETL of 5 cmH2O produced a significant decrease in respiratory frequency (-18%) but no change in minute ventilation (VE) due to a significant increase in tidal volume (VT) (19.3%). The drop in frequency was due solely to an increase in expiratory duration. ETL of 10 cmH2O significantly reduced VE (-17.5%) for the same reason. VT was maintained or increased at elevated lung volumes due to both an increase in the rate of rise of phrenic activity and a maintenance of inspiratory duration (TI) despite increases in both chemical drive and pulmonary stretch receptor (PSR) activity. No PSR adapted completely to the maintained change in lung volume. The sensitivity of the inspiratory off-switch mechanism to increases in lung volume, given by the reciprocal of the VT-TI relationship, decreased significantly during breathing on ETL. The results are consistent with the hypothesis that central habituation, not just peripheral adaptation of PSR, determines breathing pattern at elevated lung volumes.  相似文献   

9.
We describe a single-posture method for deriving the proportionality constant (K) between rib cage (RC) and abdominal (AB) amplifiers of the respiratory inductive plethysmograph (RIP). Qualitative diagnostic calibration (QDC) is based on equations of the isovolume maneuver calibration (ISOCAL) and is carried out during a 5-min period of natural breathing without using mouthpiece or mask. In this situation, K approximates the ratio of standard deviations (SD) of the uncalibrated changes of AB-to-RC volume deflections. Validity of calibration was evaluated by 1) analyzing RIP waveforms during an isovolume maneuver and 2) comparing changes of tidal volume (VT) amplitude and functional residual capacity (FRC) level measured by spirometry (SP) with RIP values. Comparisons of VT(RIP) to VT(SP) were also obtained in a variety of postures during natural (uninstructed) preferential RC and AB breathing and with voluntary changes of VT amplitude and FRC level. VT(RIP)-to-VT(SP) comparisons were equal to or closer than published reports for single posture, ISOCAL, multiple- and linear-regression procedures. QDC of RIP in supine posture with comparisons to SP in that posture and others showed better accuracy in horizontal than upright postures.  相似文献   

10.
In order to characterize the variability and correlation properties of spontaneous breathing in humans, the breathing pattern of 16 seated healthy subjects was studied during 40 min of quiet breathing using opto-electronic plethysmography, a contactless technology that measures total and compartmental chest wall volumes without interfering with the subjects breathing. From these signals, tidal volume (VT), respiratory time (TTOT) and the other breathing pattern parameters were computed breath-by-breath together with the end-expiratory total and compartmental (pulmonary rib cage and abdomen) chest wall volume changes. The correlation properties of these variables were quantified by detrended fluctuation analysis, computing the scaling exponentα. VT, TTOT and the other breathing pattern variables showed α values between 0.60 (for minute ventilation) to 0.71 (for respiratory rate), all significantly lower than the ones obtained for end-expiratory volumes, that ranged between 1.05 (for rib cage) and 1.13 (for abdomen) with no significant differences between compartments. The much stronger long-range correlations of the end expiratory volumes were interpreted by a neuromechanical network model consisting of five neuron groups in the brain respiratory center coupled with the mechanical properties of the respiratory system modeled as a simple Kelvin body. The model-based α for VT is 0.57, similar to the experimental data. While the α for TTOT was slightly lower than the experimental values, the model correctly predicted α for end-expiratory lung volumes (1.045). In conclusion, we propose that the correlations in the timing and amplitude of the physiological variables originate from the brain with the exception of end-expiratory lung volume, which shows the strongest correlations largely due to the contribution of the viscoelastic properties of the tissues. This cycle-by-cycle variability may have a significant impact on the functioning of adherent cells in the respiratory system.  相似文献   

11.
The pattern of breathing following the breaking-point of sixty breath-holds has been studied in five healthy adults and compared with the pattern during recovery from CO2-rebreathing. The volume and direction of the first respiratory movement, and the VT, V relation for the first four complete breaths was measured. Only when breath-holds were terminated with an inspiration was the accumulated drive to breathe reflected in an increased volume of the first respiratory movement: terminating expirations simply returned the chest to the resting respiratory level. The volume of the first inspiration was not influenced by the intervention of a terminating expiration, suggesting that expiratory movements do not dissipate the non-chemical component of the drive to breathe. In three of the five subjects the tidal volumes for given levels of ventilation were greater following breath-holding than following rebreathing. This altered pattern of breathing has been interpreted in terms of an insiratory-augmenting reflex.  相似文献   

12.
Birds and crocodylians, the only living archosaurs, are generally believed to employ pelvic girdle movements as a component of their respiratory mechanism. This in turn provides a phylogenetic basis for inferring that extinct archosaurs, including dinosaurs, also used pelvic girdle breathing. I examined lung ventilation through cineradiography (high-speed X-ray filming) and observed that alligators indeed rotate the pubis to increase tidal volume, but did not observe pelvic girdle movement contributing to lung ventilation in guinea fowl, emus or tinamous, despite extensive soft-tissue motion. Re-examination of fossil archosaurs reveals that pubic rotation evolved in basal crocodyliforms and that pelvic girdle breathing is not a general archosaurian mechanism. The appearance of pelvic aspiration in crocodyliforms is a striking example of the ability of amniotes to increase gas exchange or circumvent constraints on respiration through the evolution of novel accessory breathing mechanisms.  相似文献   

13.
The goal of the research was to determine the characteristics of the breathing pattern in kettlebell lifters. The following main indicators of external respiration were recorded during exercise performance: respiratory rate (RR, f), tidal volume (TV, V T ), and respiratory minute volume (RMV, V E ). The dependence of these parameters on the qualification of athletes and competitive exercise intensity was estimated. An SMP-21/01-“R-D” spirograph was used for qualitative and quantitative assessment of the main indicators of breathing patterns in kettlebell lifters. The characteristic changes in breathing of masters of sports (MS) and candidate masters of sport (CMS) were shown mainly for the three parameters, respiratory rate and tidal volume, as well as in the number of breathing cycles per cycle of exercise. Respiratory rate increases and tidal volume decreases at a high-intensity exercise. In international masters of sports (MSIC), the number of breathing cycles per cycle of competitive exercise and, consequently, respiratory rate remain constant independent of physical load. They show the predominance of only one index, tidal volume, which increases from 0.7 ± 0.1 L to 1.2 ± 0.1 L (p < 0.01) with increasing intensity of exercise. We have found transitional forms of breathing patterns in the competitive exercises of kettlebell lifting. The results lay the basis for the development of a novel concept of training and improvement of breathing technique in kettlebell lifting.  相似文献   

14.
Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dynamics, the deposition of 1- and 3-μm aerosol particles was predicted in models of human alveolar sac and terminal acinar bifurcation under rhythmic wall motion for two breathing conditions (functional residual capacity = 3 liter, tidal volume = 0.5 and 0.9 liter, breathing period = 4 s). Particles entering the model during one inspiration period were tracked for multiple breathing cycles until all particles deposited or escaped from the model. Flow recirculation inside alveoli occurred only during transition between inspiration and expiration and accounted for no more than 1% of the whole cycle. Weak flow irreversibility and convective transport were observed in both models. The average deposition efficiency was similar for both breathing conditions and for both models. Under normal gravity, total deposition was ~33 and 75%, of which ~67 and 96% occurred during the first cycle, for 1- and 3-μm particles, respectively. Under zero gravity, total deposition was ~2-5% for both particle sizes. These results support previous findings that gravitational sedimentation is the dominant deposition mechanism for micrometer-sized aerosols in acinar airways. The results also showed that moving walls and multiple breathing cycles are needed for accurate estimation of aerosol deposition in acinar airways.  相似文献   

15.
We evaluated the effects of the different patterns of chest wall deformation that occur with different body positions and modes of breathing on regional lung deformation and ventilation. Using the parenchymal marker technique, we determined regional lung behavior during mechanical ventilation and spontaneous breathing in five anesthetized recumbent dogs. Regional lung behavior was related to the patterns of diaphragm motion estimated from X-ray projection images obtained at functional residual capacity (FRC) and end inspiration. Our results indicate that 1) in the prone and supine positions, FRC was larger during mechanical ventilation than during spontaneous breathing; 2) there were significant differences in the patterns of diaphragm motion and regional ventilation between mechanical ventilation and spontaneous breathing in both body positions; 3) in the supine position only, there was a vertical gradient in lung volume at FRC; 4) in both positions and for both modes of breathing, regional ventilation was nonlinearly related to changes in lobar and overall lung volumes; and 5) different patterns of diaphragm motion caused different sliding motions and differential rotations of upper and lower lobes. Our results are inconsistent with the classic model of regional ventilation, and we conclude that the distribution of ventilation is determined by a complex interaction of lung and chest wall shapes and by the motion of the lobes relative to each other, all of which help to minimize distortion of the lung parenchyma.  相似文献   

16.
In the neonatal period, respiratory distortion of the chest wall in active sleep has been reported to reduce the thoracic gas volume. In order to investigate whether the distortion influences the tidal volume, a thorough quantification of the phase differences between the movements of the chest wall and the abdominal wall and the relation of the phase differences to the ventilation was performed on fifteen newborn infants sleeping in prone position. The changes in the circumference of the chest and abdomen were measured with mercury-in-silastic strain gauges; nasal air flow was monitored with a pneumotachograph. During quiet sleep, the movements of the chest wall and the abdominal wall were congruent and regular, and the tidal volume was not dependent on the observed phase differences between them. In active sleep, the breathing movements were incongruent, the tidal volume was negatively correlated with the phase shift between the movements of the chest wall and the abdominal wall, and the mean inspiratory flow was increased. Ventilation (ml/min) did not differ between the sleep states. This study thus suggests that, in healthy newborns in active sleep, the chest wall distortion leads to a reduction of the tidal volume, but ventilation is upheld by compensatory mechanisms, i.e. increased breathing rate and increased amplitude of movements of the diaphragm.  相似文献   

17.
Breathing pattern, thoracoabdominal motion, and separate end-expiratory positions of the rib cage and abdomen were measured noninvasively in eight healthy subjects before and after intravenous administration of either placebo or midazolam, a short-acting benzodiazepine. Compared with placebo, midazolam produced a significant (P less than 0.01) decrease in mean inspiratory flow of 29% from preinjection values, resulting in a 39% reduction in tidal volume (VT). This ventilatory depression was partly compensated by a 35% decrease in expiratory time producing an increase in respiratory rate (+39%). The fall in VT was almost entirely (91%) mediated by a reduction of the abdominal contribution to tidal breathing while sparing rib cage motion. This fact contrasts with the effects of inhalational anesthetics or morphine, which preferentially depress rib cage expansion, indicating that thoracoabdominal motion may selectively be depressed by different pharmacological agents. In addition, continuous recording of end-expiratory levels showed a significant transient fall in the rib cage's end-tidal position 2 min after midazolam administration associated with the occurrence of central apneas.  相似文献   

18.
The purpose of this study was to determine the relationship between the three-equation diffusing capacity for carbon monoxide (DLcoSB-3EQ) and lung volume and to determine how this relationship was altered when maneuvers were immediately preceded by a deep breath. DLcoSB-3EQ maneuvers were performed in nine healthy subjects either immediately after a deep breath or after tidal breathing for 10 min. The maneuvers consisted of slow inhalation of test gas from functional residual capacity to 25, 50, 75, or 100% of the inspiratory capacity and, without breath holding, slow exhalation to residual volume. After either a deep breath or tidal breathing, we found that DLcoSB-3EQ decreased nonlinearly with decreasing lung volume. At all lung volumes, DLcoSB-3EQ was significantly greater when measured after a deep breath than after tidal breathing. This effect increased as lung volume decreased, so that the greatest difference between DLcoSB-3EQ after a deep breath and that after tidal breathing occurred at the lowest lung volume. We conclude that a deep breath or spontaneous sigh has a role in reestablishing the pathway for gas exchange during tidal breathing.  相似文献   

19.
To quantify the inhomogeneity of alveolar pressures (PA) during cyclic changes in lung volume similar to those present during spontaneous breathing, inhomogeneity of PA was measured with an alveolar capsule technique in six excised canine lungs. The lungs were ventilated by a quasi-sinusoidal pump with a constant end-expiratory lung volume and tidal volumes of 10, 20, and 40% of vital capacity at breathing frequencies ranging from 5 to 45 breaths/min. Inhomogeneity of PA was quantified as the sample standard deviation of pressures measured in three capsules. A component of inhomogeneity in phase with flow and a smaller component out of phase with flow were present. The in-phase component increased approximately linearly with flow. The ratio of inhomogeneity to flow was smaller at large tidal volumes and, at the two higher tidal volumes studied, the ratio was greater during inspiration than during expiration. If these data are interpreted in terms of a simple circuit model, this degree of inhomogeneity implies an approximately twofold variation in regional time constants. Despite these considerable differences in time constants, the absolute amount of inhomogeneity as defined by the sample standard deviation of the three PA's was small (maximum 0.57 +/- 0.32 cmH2O at the highest breathing frequency and tidal volume) because airway resistance in the canine lung was small.  相似文献   

20.
The relative importance of the nose vs. the mouth in the perception of respiratory volumes has never been assessed, nor have previous respiratory perception studies been performed noninvasively. Using respiratory inductive plethysmography, we monitored 12 normal subjects noninvasively when breathing either exclusively through the nose or mouth. The sensation of inspired volume mouth breathing was compared with that of nose breathing over a wide range of the inspiratory capacity. The psychophysical techniques of tidal volume duplication, tidal volume doubling, and magnitude estimation were utilized. A just noticeable difference was calculated from the constant error of the tidal volume duplication trials. The exponents for magnitude estimation were 1.06 and 1.07 for nose and mouth breathing, respectively. The other psychophysical techniques also revealed no differences in nose and mouth volume perception. These results suggest that tidal volume changes are perceived equally well through the nose and mouth. Furthermore, the location of the receptors, important in volume perception, is probably at a distal point common to the nose and mouth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号