首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biomechanics of the lens capsule of the eye is important both in physiologic processes such as accommodation and clinical treatments such as cataract surgery. Although the lens capsule experiences multiaxial stresses in vivo, there have been no measurements of its multiaxial properties or possible regional heterogeneities. Rather all prior mechanical data have come from 1-D pressure–volume or uniaxial force-length tests. Here, we report a new experimental approach to study in situ the regional, multiaxial mechanical behavior of the lens capsule. Moreover, we report multiaxial data suggesting that the porcine anterior lens capsule exhibits a typical nonlinear pseudoelastic behavior over finite strains, that the in situ state is pre-stressed multiaxially, and that the meridional and circumferential directions are principal directions of strain, which is nearly equibiaxial at the pole but less so towards the equator. Such data are fundamental to much needed constitutive formulations.  相似文献   

2.
Blunt impact on the eye could results in lens capsular rupture that allows foreign substances to enter into the lens and leads to cataract formation. This paper aimed to investigate the mechanism of lens capsular rupture using finite element (FE) method. A FE model of the human eye was developed to simulate dynamic response of the lens capsule to a BB (a standard 4.5-mm-diameter pellet) impact. Sensitivity studies were conducted to evaluate the effect of the parameters on capsular rupture, including the impact velocity, the elastic modulus of the lens, the thickness and the elastic modulus of the lens capsule. The results indicated that the lens was subjected to anterior compression and posterior intension when the eye was stricken by a BB pellet. The strain on the posterior capsule (0.392) was almost twice as much as that on the anterior capsule (0.207) at an impact velocity of 20 m/s. The strain on the capsule was proportional to the impact velocity, while the capsular strain showed no significant change when the lens modulus elastic varied with age. The findings confirmed that blunt traumatic capsular rupture is the result of shockwave propagation throughout the eye. The posterior capsule is subjected to greater tension in blunt trauma, which is the main cause that ruptures are more commonly found on the posterior capsule than the anterior capsule. Also, thinner thickness and lower elastic modulus would contribute to the posterior capsular rupture.  相似文献   

3.
The lens capsule is a specialized thickened basement membrane that completely surrounds the lens and provides anchoring sites for zonules, the filamentous bodies that suspend the lens. Like other basement membranes, the lens capsule contains collagen IV, which is a family of six polypeptides, subunits alpha1(IV)-alpha6(IV), each of which is encoded by a distinct gene. We have investigated the presence of collagen IV subunits in the developing lens capsule by using confocal immunohistochemistry and antibodies against each of the six collagen IV subunits. In murine embryos, subunits alpha1(IV), alpha2(IV), alpha5(IV) and alpha6(IV) were detected in the basement membrane surrounding the lens vesicle, and they persisted in the capsule until adulthood. In contrast, neither collagen alpha3(IV) nor alpha4(IV) was detected in the lens capsule until 2 weeks postnatal. Similarly, we detected no collagen alpha3(IV) or alpha4(IV) in lens capsules of 54-day human embryos, while collagen alpha3(IV) and alpha4(IV) were detected in adult humans. Thus, in the lens capsule, there is a developmental shift in detectable collagen IV subunits; early in development we observed subunits alpha1(IV), alpha2(IV), alpha5(IV) and alpha6(IV), which is consistent with the presence of fibrillar [alpha1alpha1alpha2] and elastic [alpha5alpha5alpha6] protomers, but later in development components of the more cross-linked [alpha3alpha4alpha5] protomer appear. An elastic lens capsule may be necessary in order to accommodate rapid lens growth in early development, whereas later in development a stronger, more cross-linked capsule may be necessary in order to tolerate the stress caused by postnatal accommodation and disaccommodation of the lens.  相似文献   

4.
Lens fiber formation is characterized by extensive cell elongation. Earlier studies have shown that lens cell elongation in vitro can occur in the absence of microtubules and is associated with a proportional increase in cell volume. We have previously suggested that lens fiber cell elongation is directly caused by an increase in cell volume. In this report, lenses from 3- and 6-day-old chicken embryos were three-dimensionally reconstructed from serial sections to provide a measure of cell volume and length during various stages of primary and secondary lens fiber formation. In both cases, cell volume was highly correlated with cell length during lens cell elongation. In addition, during primary lens fiber formation, large intercellular spaces between lens vesicle cells disappeared as these cells began to elongate to form lens fibers. Loss of intercellular spaces would be expected if increasing cell volume were responsible for cell elongation. Finally, results of experiments in which the lens capsule was cut with a fine tungsten needle suggested that the capsule was elastic and normally under tension. These findings were used to formulate a model which accounts for the major events in lens morphogenesis based on (1) the regulation of cell volume, (2) the junctions present between lens cells, and (3) the constraint provided by the elasticity of the lens capsule.  相似文献   

5.
The lens capsule of the eye plays fundamental biomechanical roles in both normal physiological processes and clinical interventions. There has been modest attention given to the mechanical properties of this important membrane, however, and prior studies have focused on 1-D analyses of the data. We present results that suggest that the porcine anterior lens capsule has a complex, regionally dependent, nonlinear, anisotropic behavior. Specifically, using a subdomain inverse finite element method to analyze data collected via a new biplane video-based test system, we found that the lens capsule is nearly isotropic (in-plane) near the pole but progressively stiffer in the circumferential compared to the meridional direction as one approaches the equator. Because the porcine capsule is a good model of the young human capsule, there is strong motivation to determine if similar regional variations exist in the human lens capsule for knowledge of such complexities may allow us to improve the design of surgical procedures and implants.  相似文献   

6.
Volume change of the ocular lens during accommodation   总被引:1,自引:0,他引:1  
During accommodation, mammalian lenses change shape from a rounder configuration (near focusing) to a flatter one (distance focusing). Thus the lens must have the capacity to change its volume, capsular surface area, or both. Because lens topology is similar to a torus, we developed an approach that allows volume determination from the lens cross-sectional area (CSA). The CSA was obtained from photographs taken perpendicularly to the lenticular anterior-posterior (A-P) axis and computed with software. We calculated the volume of isolated bovine lenses in conditions simulating accommodation by forcing shape changes with a custom-built stretching device in which the ciliary body-zonulae-lens complex (CB-Z-L) was placed. Two measurements were taken (CSA and center of mass) to calculate volume. Mechanically stretching the CB-Z-L increased the equatorial length and decreased the A-P length, CSA, and lens volume. The control parameters were restored when the lenses were stretched and relaxed in an aqueous physiological solution, but not when submerged in oil, a condition with which fluid leaves the lens and does not reenter. This suggests that changes in lens CSA previously observed in humans could have resulted from fluid movement out of the lens. Thus accommodation may involve changes not only in capsular surface but also in volume. Furthermore, we calculated theoretical volume changes during accommodation in models of human lenses using published structural parameters. In conclusion, we suggest that impediments to fluid flow between the aquaporin-rich lens fibers and the lens surface could contribute to the aging-related loss of accommodative power. lens volume calculation; intralenticular fluid movement; presbyopia; mammalian lens  相似文献   

7.
Classical theories suggest that the surface area of the crystalline lens changes during accommodation while the lens volume remains constant. Our recent work challenged this view by showing that the lens volume decreases as the lens flattens during unaccommodation. In this paper we investigate 1) the magnitude of changes in the surface of the in vitro isolated cow lens during simulated accommodation, as well as that of human lens models, determined from lateral photographs and the application of the first theorem of Pappus; and 2) the velocity of the equatorial diameter recovery of prestretched cow and rabbit lenses by using a custom-built software-controlled stretching apparatus synchronized to a digital camera. Our results showed that the in vitro cow lens surface changed in an unexpected manner during accommodation depending on how much tension was applied to flatten the lens. In this case, the anterior surface initially collapsed with a reduction in surface followed by an increase in surface, when the stretching was applied. In the human lens model, the surface increased when the lens unaccommodated. The lens volume always decreases as the lens flattens. An explanation for the unexpected surface change is presented and discussed. Furthermore, we determined that the changes in lens volume, as reflected by the speed of the equatorial diameter recovery in in vitro cow and rabbit lenses during simulated accommodation, occurred within a physiologically relevant time frame (200 ms), implying a rapid movement of fluid to and from the lens during accommodation.  相似文献   

8.
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. Although SPARC is generally abundant in embryonic tissues and is diminished in adults, we have found that the expression of SPARC in murine lens persists throughout embryogenesis and adulthood. Our previous studies showed that targeted ablation of the SPARC gene in mice results in cataract formation, a pathology attributed partially to an abnormal lens capsule. Here we provide evidence that SPARC is not a structural component of the lens capsule. In contrast, SPARC is abundant in lens epithelial cells, and newly differentiated fiber cells, with stable expression in wild-type mice up to 2 years of age. Pertubation of the lens capsule in animals lacking SPARC appears to be a consequence of the invasion of the lens cells situated beneath the capsule. Immunoreactivity for SPARC in the lens cells was uneven, with minimal reactivity in the epithelial cells immediately anterior to the equator. These epithelial cells appeared essentially noninvasive in SPARC-null mice, in comparison to the centrally located anterior epithelial cells, in which strong labeling by anti-SPARC IgG was observed. The posterior lens fibers exhibited cytoplasmic extensions into the posterior lens capsule, which was severely damaged in SPARC-null lenses. The expression of SPARC in wild-type lens cells, together with the abnormal lens capsule in SPARC-null mice, indicated that the structural integrity of the lens capsule is dependent on the matricellular protein SPARC. The effects of SPARC in the lens appear to involve regulation of lens epithelial and fiber cell morphology and functions rather than deposition as a structural component of the lens capsule.  相似文献   

9.
We have studied the role of accommodation and binocular convergence in the predatory behaviour of two chameleon species (Chamaeleocalyptratus, C. dilepis). Accommodation measurements support earlier observations that accommodation is the major distance cue. Specifically, accommodation speed (60 D s−1), amplitude (45 D) and precision (no significant under-accommodation) were superior to those of other terrestrial vertebrates. Similar to other vertebrates, accommodation was accompanied by a prominent pupillary constriction (pupillary near response). Accommodation could be coupled or uncoupled in both eyes, depending on the experimental situation or the phase of the predatory behavioural sequence. Uncoupled accommodation occurred: 1. During scanning saccadic eye movements for prey detection. Only one eye accommodated appropriately, the other adopted a hyperopic resting refractive state. Attention switched from one eye to the other at approximately 1-s intervals. 2. During initial stages of distance estimation. Coupled accommodation only occurred shortly before the tongue shot. Coupling was demonstrated by either covering one eye with a lens or covering one eye with an infrared light transmitting cut-off filter which still permitted refraction to be measured. In both cases the amount of accommodation was identical in both eyes. Search-coil measurements showed that the angle of convergence of both eyes is too variable to permit triangulation or to provide the basic requirement for stereopsis (matching corresponding points). We conclude that coupling of accommodation serves to improve accommodation precision rather than to permit stereopsis. Accepted: 3 September 1997  相似文献   

10.
The morphological and cellular changes that occur with differentiation and development of a lentoid structure from cultured mouse lens epithelial cells have been found to be dependent on the presence of lens capsule in association with the cells. The development of the 'lentoid body' is a multiphase process involving cell replication, synthesis of mucosubstances and a basement collagen membrane, cell aggregation and differentiation. Stage-specific synthesis of lens proteins confirms that the genes regulating normal differentiation in vivo are operating in the in vitro system. The hydrated collagen gel studies described in this report demonstrate that the cuboidal morphology and apical-basal polarity of the lens epithelial cells are dependent on their relationship with the lens capsule. Following a replicative phase the cells assume a mesenchyme-like morphology and migrate into the gel. Trypsinized cells freed from the lens capsule replicate but form colonies on the surface of the gel. The implications of these results are discussed with respect to previous observations made on normal lens development and the abnormalities associated with the congenital cataractous embryonic lens.  相似文献   

11.
The morphology of the eyes and distribution of retinal ganglion cells in two sardine species (Sardinops melanostictus and Etrumeus sadina, Clupeidae) and the Japanese anchovy (Engraulis japonicus, Engraulididae) were investigated anatomically and histologically. The eyes of the sardines faced a slightly dorsolateral direction with the visual field extended obliquely upward. In contrast, the eyes in the anchovy were almost laterally directed. It was hypothesized that the sardines may have an advantage in receiving more downward irradiance compared with the anchovy. The lens muscle was larger in these three species than in many other teleosts, and its surface was entirely melanin‐pigmented. Also, the lens muscle directly and tightly adhered to the backside surface of the iris. The relative area of the lens muscle to the area of the lens, a referential value of the relative power of visual accommodation were notably larger in the species studied than in other teleost values that have been previously reported. A higher M/L% value of these clupeid fishes could facilitate fast and wide ranging visual accommodation and was considered to be associated with maintaining and/or re‐establishing school formations quickly. Analysis of topographical distributions of cells in the ganglion cell layer showed that cell density was highest in the ventrotemporal quadrant of the retina (temporal of the optic cleft) in all three species. Another potentially important role for the black‐pigmented lens muscle may be to block the specialized retinal area from intense sunlight that scatters and irradiates upward or laterally in the surface waters that they inhabit. Thus, the sardine and anchovy may take advantage of efficient detection of visual signals in the frontal‐upward direction and further improve visibility of the target in this direction. J. Morphol. 276:415–424, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
1. Studies on the central nervous system related to lens accommodation in cat and monkey were reviewed. 2. During the last decade, a considerable amount of neurophysiological data on the peripheral innervation of the ciliary muscle, properties of parasympathetic oculomotor neurons and mesencephalic reticular neurons have accumulated. 3. Neurophysiological and anatomical evidence supporting the contribution of the cerebellum to lens accommodation has been obtained. 4. Recently, cerebral cortical neurons in the parieto-occipital cortex with activities related to lens accommodation were found in cat and monkey.  相似文献   

13.
Summary A homolog of the Edinger-Westphal nucleus of other vertebrates is described in two species of serranid basses of the genusParalabrax, a group possessing a wide range of ocular accommodation but lacking a pupillary reflex to light. The nucleus was found by retrograde labeling from the ciliary ganglion and lies dorsolateral to the ipsilateral oculomotor nucleus. The nucleus consists of 60 to 100 neurons with an average soma diameter of about 20 m in animals weighing 70 to 150 g. Electrophysiological experiments support the identification. Microstimulation of the nucleus evokes contraction of the ipsilateral lens retractor muscle and slight constriction of the caudal ipsilateral iris. Multi- and single-unit recordings in the nucleus reveal spontaneous firing (about 30 spikes/s in single units), the rate of which decreases during visually-evoked lens retractor relaxations (accommodation to near stimuli). Recordings of muscle fiber activity in the lens retractor show essentially the same behavior, which suggests that the ciliary ganglion and neuromuscular junctions simply relay impulses with little if any synaptic integration. The existence of a discrete Edinger-Westphal nucleus devoted largely to accommodation makesParalabrax a good model system for the further tracing of central accommodation control pathways.Abbreviations CNS central nervous system - EW Edinger-Westphal nucleus - HRP horseradish peroxidase - WGA wheat germ agglutinin  相似文献   

14.
Proteins in basement membrane (BM) are long‐lived and accumulate chemical modifications during aging; advanced glycation endproduct (AGE) formation is one such modification. The human lens capsule is a BM secreted by lens epithelial cells. In this study, we have investigated the effect of aging and cataracts on the AGE levels in the human lens capsule and determined their role in the epithelial‐to‐mesenchymal transition (EMT) of lens epithelial cells. EMT occurs during posterior capsule opacification (PCO), also known as secondary cataract formation. We found age‐dependent increases in several AGEs and significantly higher levels in cataractous lens capsules than in normal lens capsules measured by LC‐MS/MS. The TGFβ2‐mediated upregulation of the mRNA levels (by qPCR) of EMT‐associated proteins was significantly enhanced in cells cultured on AGE‐modified BM and human lens capsule compared with those on unmodified proteins. Such responses were also observed for TGFβ1. In the human capsular bag model of PCO, the AGE content of the capsule proteins was correlated with the synthesis of TGFβ2‐mediated α‐smooth muscle actin (αSMA). Taken together, our data imply that AGEs in the lens capsule promote the TGFβ2‐mediated fibrosis of lens epithelial cells during PCO and suggest that AGEs in BMs could have a broader role in aging and diabetes‐associated fibrosis.  相似文献   

15.
Vietnamese leaf turtles (Geoemyda spengleri) were tested for their ability to focus on prey objects at various distances. Accommodation was continuously measured by infrared photoretinoscopy. All animals investigated during this study showed a surprisingly high precision of accommodation over a range of over 30 D. Measured accommodation matched the target distance accurately for distances between 3 and 17 cm. The turtles switched between independent and coupled accommodation in the two eyes. Independent accommodation was observed when the turtles inspected their environment visually without a defined object of interest. Coupled accommodation was only observed during binocular prey fixation. When a turtle aimed at a target, the symmetrical focus of both eyes persisted even if vision was totally blocked in one eye or altered by ophthalmic lenses. This suggests that the eyes were linked by internal neuronal mechanisms. The pupil of the eye responded clearly to changes in ambient light intensity. A strong decrease in pupil size was also observed when the eye was focused on a close target. In this case, the constriction of the pupil probably aids in the deformation of the eye lens during near-accommodation.  相似文献   

16.
Regulation of cell adhesion and migration in lens development   总被引:6,自引:0,他引:6  
Cell movements during lens development and differentiation involve dynamic regulation of cell-matrix and cell-cell adhesion. How these processes are regulated depends on the particular array of matrix components and adhesion proteins that are expressed, as well as the signaling pathways that affect them. This review examines what is known about adhesion proteins and their regulation in the lens in light of recent findings about the mechanism of cell migration. The characteristic shape and organization of the lens depends on highly regulated cell movements during development and differentiation. Epithelial cells at the equator migrate posteriorly, bringing them into contact with factors in the vitreous humor and initiating differentiation. Elongation of the differentiating fiber cells is coupled with directed migration, posteriorly along the capsule and anteriorly along the fiber cell-epithelial interface, to generate a symmetrically organized fiber cell mass with aligned suture planes. To make these movements, cells systematically create and dissolve cell-cell and cell-matrix adhesions, form connections between these adhesions and the cytoskeleton, and generate contractile force. Since errors in cell migration may lead to aberrant lens shape or misplacement of the lens sutures, precise regulation of each step is essential for the optical quality of the lens. Recent advances in cellular developmental biology have begun to shed light on the molecular mechanisms underlying cell movements and the changes in adhesion that make them possible. This review will summarize those findings and relate them to relevant studies of the lens to provide an outline of the cellular events that lead to lens morphogenesis.  相似文献   

17.
The lens is an avascular organ that transmits and focuses light images onto the retina. Intercellular gap junction channels, formed by at least three different connexin protein subunits, α1 (connexin43 or Gja1), α3 (connexin46 or Gja3) and α8 (connexin50 or Gja8), are utilized to transport metabolites, ions and water in the lens. In combination with physiological and biochemical analyses, recent genetic studies have significantly improved our understanding about the roles of diverse gap junction channels formed by α3 and α8 connexin subunits during lens development and cataract formation. These studies have demonstrated that α3 connexin is essential for lens transparency while α8 connexin is important for lens growth and transparency. Diverse gap junction channels formed by α3 and α8 subunits are important for the differentiation, elongation and maturation of lens fiber cells. Aberrant gap junction communication, caused by alterations of channel assembly, channel gating or channel conductance, can lead to different types of cataracts. These findings provide some molecular insights for essential roles of connexins and gap junctions in lens formation and the establishment and maintenance of lifelong lens transparency.  相似文献   

18.
Published data on the mechanical performance of the human lens capsule when tested under uniaxial and biaxial conditions are reviewed. It is concluded that two simple phenomenological constitutive models (namely a linear elastic model and a Fung-type hyperelastic model) are unable to provide satisfactory representations of the mechanical behaviour of the capsule for both of these loading conditions. The possibility of resolving these difficulties using a structural constitutive model for the capsule, of a form that is inspired by the network of collagen IV filaments that exist within the lens capsule, is explored. The model is implemented within a rectangular periodic cell. Prescribed stretches are imposed on the periodic cell and the network is allowed to deform in a non-affine manner. The performance of the constitutive model correlates well with previously published test data. One possible application of the model is in the development of a multi-scale analysis of the mechanics of the human lens capsule.  相似文献   

19.
To investigate potential heterogeneity and developmental changes in basement membranes during embryogenesis, we performed immunohistochemical analyses on lens capsules in chicken embryos of different ages using domain-specific monoclonal antibodies against type IV collagen. We found that the capsule of the newly formed lens stained uniformly with antibodies against this component of basement membranes, but with increasing age and differentiation of the lens cells the anterior lens capsule remained brightly fluorescent while staining of the posterior capsule became relatively much less intense. This antero- posterior gradient of anti-type IV collagen antibody reactivity demonstrated that developmentally-regulated changes can occur within a single, continuous basement membrane.  相似文献   

20.
During development of the vertebrate lens there are dynamic interactions between the extracellular matrix (ECM) of the lens capsule and lens cells. Disruption of the ECM causes perturbation of lens development and cataract. Similarly, changes in cell signaling can result in abnormal ECM and cataract. Integrins are key mediators of ECM signals and recent studies have documented distinct repertoires of integrin expression during lens development, and in anterior subcapsular cataract (ASC) and posterior caspsule opacification (PCO). Increasingly, studies are being directed to investigating the signaling pathways that integrins modulate and have identified Src, focal adhesion kinase (FAK) and integrin-linked kinase (ILK) as downstream kinases that mediate proliferation, differentiation and morphological changes in the lens during development and cataract formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号