首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
搅拌是影响透明质酸(HA)发酵的一个重要因素,然而有关搅拌对HA发酵影响的认识存在较大争议。本研究采用计算流体力学(CFD)技术深入研究了搅拌对菌体生长和HA合成的影响。结果表明,菌体量和HA产量受搅拌转速的影响很小,而HA分子量随着转速的增加呈现出先增加后降低的趋势。分阶段控制转速研究表明转速对HA分子量的影响主要体现在HA合成阶段。CFD计算结果表明随着搅拌转速的增加,混合时间降低的同时反应器内部的剪切速率明显增加。最终通过改变搅拌桨组合方式的手段有效地解决了上述矛盾,并使得HA分子量提高23.9%。  相似文献   

2.
Understanding cardiac blood flow patterns has many applications in analysing haemodynamics and for the clinical assessment of heart function. In this study, numerical simulations of blood flow in a patient-specific anatomical model of the left ventricle (LV) and the aortic sinus are presented. The realistic 3D geometry of both LV and aortic sinus is extracted from the processing of magnetic resonance imaging (MRI). Furthermore, motion of inner walls of LV and aortic sinus is obtained from cine-MR image analysis and is used as a constraint to a numerical computational fluid dynamics (CFD) model based on the moving boundary approach. Arbitrary Lagrangian–Eulerian finite element method formulation is used for the numerical solution of the transient dynamic equations of the fluid domain. Simulation results include detailed flow characteristics such as velocity, pressure and wall shear stress for the whole domain. The aortic outflow is compared with data obtained by phase-contrast MRI. Good agreement was found between simulation results and these measurements.  相似文献   

3.
The potential outcome of a surgical enlargement of internal nasal channels may be a complication of nasal breathing termed the Empty Nose Syndrome (ENS). ENS pathophysiology is not entirely understood because the expansion of air pathways would in theory ease inhalation. The present contribution is aimed at defining the biophysical markers responsible for ENS. Our study, conducted in silico, compares nasal aerodynamics in pre- and post-operative geometries acquired by means of computer tomography from the same individual. In this article, we elucidate and analyse the deviation of airflow patterns and nasal microclimate from the healthy benchmarks. The analysis reveals 53% reduction in flow resistance, radical re-distribution of nasal airflow, as well as dryer and colder nasal microclimate for the post-operative case.  相似文献   

4.
Boundary conditions (BCs) are an essential part in computational fluid dynamics (CFD) simulations of blood flow in large arteries. Although several studies have investigated the influence of BCs on predicted flow patterns and hemodynamic wall parameters in various arterial models, there is a lack of comprehensive assessment of outlet BCs for patient-specific analysis of aortic flow. In this study, five different sets of outlet BCs were tested and compared using a subject-specific model of a normal aorta. Phase-contrast magnetic resonance imaging (PC-MRI) was performed on the same subject and velocity profiles extracted from the in vivo measurements were used as the inlet boundary condition. Computational results obtained with different outlet BCs were assessed in terms of their agreement with the PC-MRI velocity data and key hemodynamic parameters, such as pressure and flow waveforms and wall shear stress related indices. Our results showed that the best overall performance was achieved by using a well-tuned three-element Windkessel model at all model outlets, which not only gave a good agreement with in vivo flow data, but also produced physiological pressure waveforms and values. On the other hand, opening outlet BCs with zero pressure at multiple outlets failed to reproduce any physiologically relevant flow and pressure features.  相似文献   

5.
Blood flow patterns in the human left ventricle (LV) have shown relation to cardiac health. However, most studies in the literature are limited to a few patients and results are hard to generalize. This study aims to provide a new framework to generate more generalized insights into LV blood flow as a function of changes in anatomy and wall motion. In this framework, we studied the four-dimensional blood flow in LV via computational fluid dynamics (CFD) in conjunction with a statistical shape model (SSM), built from segmented LV shapes of 150 subjects. We validated results in an in-vitro dynamic phantom via time-resolved optical particle image velocimetry (PIV) measurements. This combination of CFD and the SSM may be useful for systematically assessing blood flow patterns in the LV as a function of varying anatomy and has the potential to provide valuable data for diagnosis of LV functionality.  相似文献   

6.
7.
The purpose of this research was to further investigate the hydrodynamics of the United States Pharmacopeia (USP) paddle dissolution apparatus using a previously generated computational fluid dynamics (CFD) model. The influence of paddle rotational speed on the hydrodynamics in the dissolution vessel was simulated. The maximum velocity magnitude for axial and tangential velocities at different locations in the vessel was found to increase linearly with the paddle rotational speed. Path-lines of fluid mixing, which were examined from a central region at the base of the vessel, did not reveal a region of poor mixing between the upper cylin-drical and lower hemispherical volumes, as previously speculated. Considerable differences in the resulting flow patterns were observed for paddle rotational speeds between 25 and 150 rpm. The approximate time required to achieve complete mixing varied between 2 to 5 seconds at 150 rpm and 40 to 60 seconds at 25 rpm, although complete mixing was achievable for each speed examined. An analysis of CFD-generated velocities above the top surface of a cylindrical compact positioned at the base of the vessel, below the center of the rotating paddle, revealed that the fluid in this region was undergoing solid body rotation. An examination of the velocity boundary layers adjacent to the curved surface of the compact revealed large peaks in the shear rates for a region within∼3 mm from the base of the compact, consistent with a ‘grooving’ effect, which had been previously seen on the surface of compacts following dissolution, associated with a higher dissolution rate in this region.  相似文献   

8.
Fluid–structure interaction (FSI) simulations using five patient-specific aneurysm geometries are carried out to investigate the difference between ruptured and unruptured aneurysms.  相似文献   

9.
Controlled shear affinity filtration (CSAF) is a novel integrated processing technology that positions a rotor directly above an affinity membrane chromatography column to permit protein capture and purification directly from cell culture. The conical rotor is intended to provide a uniform and tunable shear stress at the membrane surface that inhibits membrane fouling and cell cake formation by providing a hydrodynamic force away from and a drag force parallel to the membrane surface. Computational fluid dynamics (CFD) simulations are used to show that the rotor in the original CSAF device (Vogel et al., 2002) does not provide uniform shear stress at the membrane surface. This results in the need to operate the system at unnecessarily high rotor speeds to reach a required shear stress of at least 0.17 Pa at every radial position of the membrane surface, compromising the scale-up of the technology. Results from CFD simulations are compared with particle image velocimetry (PIV) experiments and a numerical solution for low Reynolds number conditions to confirm that our CFD model accurately describes the hydrodynamics in the rotor chamber of the CSAF device over a range of rotor velocities, filtrate fluxes, and (both laminar and turbulent) retentate flows. CFD simulations were then carried out in combination with a root-finding method to optimize the shape of the CSAF rotor. The optimized rotor geometry produces a nearly constant shear stress of 0.17 Pa at a rotational velocity of 250 rpm, 60% lower than the original CSAF design. This permits the optimized CSAF device to be scaled up to a maximum rotor diameter 2.5 times larger than is permissible in the original device, thereby providing more than a sixfold increase in volumetric throughput.  相似文献   

10.
This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0°, 30°, 60°, 90° and 120°). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0° and 120° respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.  相似文献   

11.
A computational fluid dynamics (CFD) method is presented to investigate the flow of cerebro-spinal fluid (CSF) in the cerebral aqueduct. In addition to former approaches exhibiting a rigid geometry, we propose a model which includes a deformable membrane as the wall of this flow channel. An anatomical shape of the aqueduct was computed from magnetic resonance images (MRI) and the resulting meshing was immersed in a marker-and-cell (MAC) staggered grid for to take into account fluid–structure interactions. The time derivatives were digitized using the Crank–Nicolson scheme. The equation of continuity was modified by introducing an artificial compressibility and digitized by a finite difference scheme.

Calculations were validated with the simulation of laminar flow in a rigid tube. Then, comparisons were made between simulations of a rigid aqueduct and a deformable one. We found that the deformability of the walls has a strong influence on the pressure drop for a given flow.  相似文献   

12.
Cerebrospinal fluid (CSF) enters nervous tissues through perivascular spaces. Flow through these pathways is important for solute transport and to prevent fluid accumulation. Syringomyelia is commonly associated with subarachnoid space obstructions such as Chiari I malformation. However, the mechanism of development of these fluid-filled cavities is unclear. Studies have suggested that changes in the arterial and CSF pressures could alter normal perivascular flow. This study uses an idealised model of the perivascular space to investigate how variation in the arterial pulse influences fluid flow. The model used simulated subarachnoid pressures from healthy controls (N = 9), Chiari patients with (N = 7) and without (N = 8) syringomyelia. A parametric analysis was conducted to determine how features of the arterial pulse altered flow. The features of interest included: the timing and magnitude of the peak displacement, and the area under the curve in the phases of uptake and decline. A secondary aim was to determine if the previously observed differences between subject groups were sensitive to variation in the arterial pulse wave. The study demonstrated that the Chiari patients without a syrinx maintained a significantly higher level of perivascular inflow over a physiologically likely range of pulse wave shapes. The analysis also suggested that age-related changes in the arterial pulse (i.e. increased late systolic pulse amplitude and faster diastolic decay), could increase resistance to perivascular inflow affecting solute transport.  相似文献   

13.
Animal‐borne data loggers (ABDLs) or “tags” are regularly used to elucidate animal ecology and physiology, but current literature highlights the need to assess associated deleterious impacts including increased resistive force to motion. Previous studies have used computational fluid dynamics (CFD) to estimate this impact, but many suffer limitations (e.g., inaccurate turbulence modeling, neglecting boundary layer transition, neglecting added mass effects, and analyzing the ABDL in isolation from the animal). A novel CFD‐based method is presented in which a “tag impact envelope” is defined utilizing simulations with and without transition modeling to define upper and lower drag limits, respectively, and added mass coefficients are found via simulations with sinusoidally varying inlet velocity, with modified Navier‐Stokes conservation of momentum equations enforcing a shift to the animal's noninertial reference frame. The method generates coefficients for calculating total resistive force for any velocity and acceleration combination, and is validated against theory for a prolate spheroid. An example case shows ABDL drag impact on a harp seal of 11.21%–16.24%, with negligible influence on added mass. By considering the effects of added mass and boundary layer transition, the approach presented is an enhancement to the CFD‐based ABDL impact assessment methods previously applied by researchers.  相似文献   

14.
A parametric study was conducted to delineate the efficacy of personal protective equipment (PPE), such as ballistic faceshields and advanced combat helmets, in the case of a blast. The propagations of blast waves and their interactions with an unprotected head, a helmeted one, and a fully protected finite element head model (FEHM) were modeled. The biomechanical parameters of the brain were recorded when the FEHM was exposed to shockwaves from the front, back, top, and bottom. The directional dependent tissue response of the brain and the variable efficiency of PPE with respect to the blast orientation were two major results of this study.  相似文献   

15.
Endothelial protein C receptor (EPCR) is a CD1‐like transmembrane glycoprotein with important regulatory roles in protein C (PC) pathway, enhancing PC's anticoagulant, anti‐inflammatory, and antiapoptotic activities. Similarly to homologous CD1d, EPCR binds a phospholipid [phosphatidylethanolamine (PTY)] in a groove corresponding to the antigen‐presenting site, although it is not clear if lipid exchange can occur in EPCR as in CD1d. The presence of PTY seems essential for PC γ‐carboxyglutamic acid (Gla) domain binding. However, the lipid‐free form of the EPCR has not been characterized. We have investigated the structural role of PTY on EPCR, by multiple molecular dynamics (MD) simulations of ligand bound and unbound forms of the protein. Structural changes, subsequent to ligand removal, led to identification of two stable and folded ligand‐free conformations. Compared with the bound form, unbound structures showed a narrowing of the A′ pocket and a high flexibility of the helices around it, in agreement with CD1d simulation. Thus, a lipid exchange with a mechanism similar to CD1d is proposed. In addition, unbound conformations presented a reduced interaction surface for Gla domain, confirming the role of PTY in establishing the proper EPCR conformation for the interaction with its partner protein. Single MD simulations were also obtained for 29 mutant models with predicted structural stability and impaired binding ability. Ligand affinity calculations, based on linear interaction energy method, showed that substitution‐induced conformational changes affecting helices around the A′ pocket were associated to a reduced binding affinity. Mutants responsible for this effect may represent useful reagents for experimental tests. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号