首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteases are enzymes produced by several filamentous fungi with important biotechnological applications. In this work, a protease from Aspergillus flavus was characterized. The culture filtrate of A. flavus was purified to homogeneity by Sephacryl S-200 column chromatography followed by CM–cellulose. The molecular weight of the purified enzyme was estimated to be approximately 32?kDa by SDS–PAGE. The enzyme hydrolysed BTpNA (N-α-benzoyl-dl-tyrosyl-p-nitroanilide), azo-casein and casein as substrates. Optimal temperature and pH were 55?°C and 6.5, respectively. The enzyme was stimulated by Mg2+, Ca2+, Zn2+ and inhibited by Hg2+ and Ag2+ and Cu2+. The protease showed increased activity with detergents, such as Tween 80 and Triton X, and was stable to the reducing agents, such as β-mercaptoethanol. The protease activity was strongly inhibited in the presence of phenylmethylsulfonyl fluoride, indicating it is a serine protease. The enzyme entrapped in calcium alginate beads retained its activity for longer time and could be reused up to 10 times. The thermostability was increased after the immobilization and the enzyme retained 100% of activity at 45?°C after 60?min of incubation, and 90% of residual activity at 50?°C after 30?min. In contrast, the free enzyme only retained 10% of its residual activity after 60?min at 50?°C. The enzymatic preparation was demonstrated to be efficient in the capability of dehairing without destruction of the hide. The remarkable properties such as temperature, pH and immobilization stability found with this enzyme assure that it could be a potential candidate for industrial applications.  相似文献   

2.
The application of protease as a laundry detergent additive from a newly isolated Nocardiopsis sp., isolated from a soil sample collected in Northeast Brazil is reported. The optimal pH and temperature for protease activity were pH 10.5 and 50 °C, respectively. The enzyme was stable in a long-term incubation, showed 73.5% of initial activity at pH 10.5 and 61.7% at pH 12.0 for 120 min. Approximately 60% of initial activity remained after 120 min at 50 °C or after 30 min at 80 °C. Almost 87% of enzyme activity was retained in the presence of 10% (v/v) of peroxide at 40 °C, after 1 h. The protease also was stable in the presence of oxidants and surfactants such as SDS, saponin, Tween 20 and Tween 80 after 30 min. In the presence of Omo®, the enzyme retained 64% of its activity at 40 °C for 1 h. An increase in the proteolytic activity (6–17%) was observed with K+, Na+, and Mg++ ions. At pH 8.0, the protease hydrolysed casein maximally (50 U/mg).  相似文献   

3.
The Amycolatopsis cihanbeyliensis Mut43, which is obtained by UV radiation, exhibited endoglucanase activity of 5.21?U/mL, which was ~2.3-fold higher than that of the wild strain (2.04?U/mL). The highest enzyme activity was obtained after 3 days of incubation at 32?°C, pH 7.0, 150?rpm, and 6% NaCl in a liquid medium containing 1.5% (w/v) wheat straw (0.25?mm of particle size) and 0.6% (w/v) yeast extract. Enzyme activity was eluted as a single peak (gel filtration chromatography), and Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis of the corresponding peak revealed a molar mass of 30?kDa. Zymogram analysis confirmed the presence of a single active endoglucanase component. The enzyme was purified to ~21-fold, and the mean overall yield was ~6%. The purified endoglucanase was active up to 80?°C and showed a half-life of 214?min at 60?°C in the absence of substrate at pH 8.0. The apparent Km value for the purified endoglucanase was 0.70?mg/mL, while the Vmax value was 6.20 Units/μg. Endoglucanase activity was reduced (25%) by treatment with 30?U of proteinase K/mg. The addition of Mg+2 and Ca+2 (5?mM) enhanced endoglucanase activity. Additionally, endoglucanase activity in the presence of 5?mM SDS or organic solvents was 75 and 50% of maximum activity, respectively. The high levels of enzyme production from A. cihanbeyliensis Mut43 achieved under batch conditions, coupled with the temperature stability, activity over a broad pH range, relatively high stability (70–80%) in the presence of industrial laundry detergents and storage half-lives of 45 days at +4?°C and 75 days at ?20?°C signify the suitability of this enzyme for industrial applications as detergent additive.  相似文献   

4.
An extracellular thermostable alkaline serine protease enzyme from Aeribacillus pallidus C10 (GenBank No: KC333049), was purified 4.85 and 17. 32-fold with a yield of 26.9 and 19.56%, respectively, through DE52 anion exchange and Probond affinity chromatography. The molecular mass of the enzyme was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), with approximately 38.35?kDa. The enzyme exhibited optimum activity at pH 9 and at temperature 60?°C. It was determined that the enzyme had remained stable at the range of pH 7.0–10.0, and that it had preserved more than 80% of its activity at a broad temperature range (20–80?°C). The enzyme activity was found to retain more than 70% and 55% in the presence of organic solvents and commercial detergents, respectively. In addition, it was observed that the enzyme activity had increased in the presence of 5% SDS. KM and Vmax values were calculated as 0.197?mg/mL and 7.29?μmol.mL?1.min?1, respectively.  相似文献   

5.
Mutanases are enzymes that catalyze hydrolysis of α-1,3-glucosidic bonds in various α-glucans. One of such glucans, mutan, which is synthesized by cariogenic streptococci, is a major virulence factor for induction of dental caries. This means that mutan-degrading enzymes have potential in caries prophylaxis. In this study, we report the purification, characterization, and partial amino acid sequence of extracellular mutanase produced by the MP-1 strain of Paenibacillus curdlanolyticus, bacterium isolated from soil. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme showed a single protein band of molecular mass 134 kD, while native gel filtration chromatography confirmed that the enzyme was a monomer of 142 kD. Mutanase showed a pH optimum in the range from pH 5.5 to 6.5 and a temperature optimum around 40–45°C. It was thermostable up to 45°C, and retained 50% activity after 1 hr at 50°C. The enzyme was fully stable at a pH range of 4 to 10. The enzyme activity was stimulated by the addition of Tween 20, Tween 80, and Ca2+, but it was significantly inhibited by Hg2+, Ag+, and Fe2+, and also by p-chloromercuribenzoate, iodoacetamide, and ethylenediamine tetraacetic acid (EDTA). Mutanase preparation preferentially catalyzed the hydrolysis of various streptococcal mutans and fungal α-1,3-glucans. It also showed binding activity to insoluble α-1,3-glucans. The N-terminal amino acid sequence was NH2-Ala-Gly-Gly-Thr-Asn-Leu-Ala-Leu-Gly-Lys-Asn-Val-Thr-Ala-Ser-Gly-Gln. This sequence indicated an analogy of the enzyme to α-1,3-glucanases from other Paenibacillus and Bacillus species.  相似文献   

6.
The influence of different cultivation conditions on β-glucosidase production and of some parameters on the activity and stability of this enzyme were studied inNectria catalinensis. Maximal β-glucosidase production was achieved with ammonium nitrate (0.5 g N/L) as nitrogen source. Tween 80, Tween 20 and Triton X-100 increased β-glucosidase yields, Tween 80 was the most effective for enzyme release and growth at a concentration of 3.4 mmol/L. On the other hand, Tween 20 and Triton X-100 had an inhibitory effect onN. catalinensis growth. A temperature of 23°C and an initial pH of cultures of 6.5 were optimal for biomass and β-glucosidase production. Under optimal cultural conditions (ammonium nitrate, 0.5 g N/L; Tween 80, 3.4 mmol/L; 23°C; initial pH 6.5) the β-glucosidase yield was increased more than five fold respect to the initial state. Optimal temperature for β-glucosidase activity was 45°C, the initial activity dropped 60 % after 6 h of incubation at this temperature. Optimal pH for enzyme activity was 5.3. At this pH the β-glucosidase was completely stable after 3 d of incubation. TheV andK m values calculated from Lineweaver-Burk and Eadie-Hofstee plots were 0.23 μmol 4-nitrophenol per min per mg of protein and 0.25 mmol 4-nitrophenol β-d-glucopyranoside per L, respectively. The activation energy according to Arrhenius plot was 49.6 KJ/mol.  相似文献   

7.
The purification and characterization of psychro‐thermoalkalistable protease from psychrotrophic Pseudomonas putida isolate is being reported for the first time. A ~53 kDa protease was purified 21.4‐folds with 57.2% recovery by ultrafiltration and hydrophobic interaction chromatography. Kinetic analyses revealed the Km and Vmax to be 1.169 mg mL?1 and 0.833 mg mL?1 min?1, respectively. The kcat value of 3.05 × 102 s?1 indicated high affinity and catalytic efficiency toward casein. The protease was most active at pH 9.5 and 40°C, with 100% stability in pH and temperature range of 6.0–11.0 and 10–40°C, respectively. Presence of Zn2+ increased the thermostability of protease (at 70°C) by 433%. Ethylene diamine tetra acetic acid (EDTA) and 1,10‐phenanthroline were inhibitory, whereas phenyl methyl sulfonyl fluoride (PMSF), p‐chloro mercuric benzoate (PCMB), and β‐mercaptoethanol were ineffective, revealing the enzyme to be a metalloprotease. Zinc, calcium, iron, nickel, and copper at 1 mM increased the enzyme activity (102–134%). Complete reversion of enzyme inhibition (caused by Ethylene diamine tetra acetic acid [EDTA]) by Zn2+ affirmed this enzyme as zinc‐dependent metalloprotease. At 0.1% concentration, Triton X‐100 and Tween 80 slightly increased, while SDS and H2O2 reduced the protease activity. In the presence of 0.1% commercial detergents, the enzyme was fairly stable (54–81%). In the presence of organic solvent, the protease was remarkably stable exhibiting 72–191% activities. In contrast, savinase exhibited good stability in the presence of hydrophilic solvents, while chymotrypsin showed elevated activities with benzene, toluene, and xylene only. Circular dichroism analysis revealed the protease as a β‐rich protein, having large fraction (~40%) of β‐sheets. Presence of different environmental conditions altered the β‐content, which accordingly affected the protease activity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

8.
The extracellular lipase produced by Acinetobacter sp. K5b4 was purified to homogeneity using ultrafiltration (cutoff 30?KDa) followed by gel filtration chromatography on Sephadex G-50. The enzyme was purified to homogeneity with an apparent molecular mass of 133?KDa by SDS-PAGE. This purification resulted on 10.24 fold with 18.3% recovery. The Km and Vmax of purified enzyme when using pNPL hydrolysis were 4.0?mM and 73.53?nmol/ml/min, respectively. The pure enzyme was greatly stimulated in the presence of 20, 40 and 60% (v/v) methanol, DMSO and acetone whereas, ethanol, acetonitrile and propanol decreased the enzyme activity. Maximum enzyme activity was achieved at pH 7.0 and incubation temperature of 27?°C. The enzyme was stable within a pH range of 6.5 to 7 at 27?°C for 1?h. The enzyme activity was enhanced up to 36% by KCl, BaCl2, MgCl2 and CaCl2 while obviously inhibited (10–20%) by CoCl2, ZnCl2, MnCl2 and CuCl2. No inhibitory effects were observed with 1.0 and 5.0?mM of 2-mercaptoethanol and EDTA. Similarly, SDS at 1.0?mM does not affect the enzyme activity while high reduction (80%) was observed at 5.0?mM SDS concentration. The enzyme was active against p-nitrophenyl esters of C8, C12 and C16 with highest preference to the medium carbon chain p-nitrophenyl caprylate (C8). The fact that the enzyme displays distinct stability in the presence of methanol, DMSO and acetone suggests that this lipase is suitable as biocatalyst in organic synthesis where such hydrophilic organic solvents are used as a reaction media.  相似文献   

9.
An extracellular detergent tolerant protease producing strain VSG-4 was isolated from tropical soil sample and identified as Bacillus subtilis based on morphological, biochemical characteristics as well as 16S-rRNA gene sequencing. The VSG-4 protease was purified to homogeneity using ammonium sulphate precipitation, dialysis and sephadex G-200 gel permeation chromatography with a 17.4 purification fold. The purified enzyme was active and stable over a broad range of pH (8.0–11.0, optimum at 9.0) and temperature (40°C to 60°C, optimum at 50°C). The thermostability of the enzyme was significantly increased by the addition CaCl2. This enzyme was strongly inhibited by PMSF and DFP, suggesting that it belongs to the serine protease superfamily. The purified VSG-4 alkaline protease showed remarkable stability in anionic (5 mM SDS) and ionic (1% Trion X-100 and 1% Tween 80) detergents. It retained 97±2% and 83.6±1.1% of its initial activity after 1 h preincubation in the presence of 1 % H2O2 and 1 % sodium perborate, respectively. Furthermore, the purified enzyme showed excellent stability and compatibility with some commercial laundry detergents besides its stain removal capacity. Considering these promising properties, VSG-4 protease may find tremendous application in laundry detergent formulations.  相似文献   

10.
Abstract

The current study evaluated the production and characterization of β-glucosidase by the thermophilic fungus Thermomucor indicae-seudaticae in solid-state fermentation of wheat bran. Isolated fungi have significant amounts of β-glucosidase, an enzyme that may be applied to different industrial processes, such as the production of fuels, food, and other chemical compounds. Maximal enzyme activity occurred in pH 3.5–4.5 and at 70?°C. The enzyme exhibited high thermostability, for 1?h, up to 60?°C, and good tolerance to glucose (10?mM) and ethanol (10%). The optimization of fermentative parameters on the production of β-glucosidase was carried out by evaluating the best supplementary nutrient source, pH of nutrient solution, initial substrate moisture and fermentation temperature. The optimization of the above fermentation parameters increased enzyme activity by 120.0%. The highest enzymatic activity (164.0?U/g) occurred with wheat bran containing 70% initial moisture, supplemented with 1.0% (NH4)2SO4 solution at pH 5.5–6.0 and fungus incubated at 40?°C. A more detailed study of β-glucosidase suggested that Sulfur is an important component of the main amino acid present in this enzyme. The enhancer of the enzyme activity occurred when the fungus was grown on wheat bran supplemented with a sulfur-containing solution. In fact, increasing the concentration of sulfur in the solution increased its activity.  相似文献   

11.
The present study was designed to isolate and identify an extremely halophilic lipase-producing bacterial strain, purify and characterize the related enzyme and evaluate its application for ethyl and methyl valerate synthesis. Among four halophilic isolates, the lipolytic ability of one isolate (identified as Bacillus atrophaeus FSHM2) was confirmed. The enzyme (designated as BaL) was purified using three sequential steps of ethanol precipitation and dialysis, Q-Sepharose XL anion-exchange chromatography and SP Sepharose cation-exchange chromatography with a final yield of 9.9% and a purification factor of 31.8. The purified BaL (Mw~85?kDa) was most active at 70?°C and pH 9 in the presence of 4 M NaCl and retained 58.7% of its initial activity after 150?min of incubation at 80?°C. The enzyme was inhibited by Cd2+ (35.6?±?1.7%) but activated by Ca2+ (132.4?±?2.2%). Evaluation of BaL's stability in the presence of organic solvents showed that xylene (25%) enhanced the relative activity of the enzyme to 334.2?±?0.6% after 1?h of incubation. The results of esterification studies using the purified BaL revealed that maximum ethyl valerate (88.5%) and methyl valerate (67.5%) synthesis occurred in the organic solvent medium (xylene) after 48?h of incubation at 50?°C.  相似文献   

12.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP?g?1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min?1 µg?1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

13.
An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37°C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH4)2SO4 precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60°C; however, it is shifted to 70°C after addition of 5 mM Ca2+ ions. The enzyme was stable between 30 and 40°C for 2 h at pH 10.5; only 14% activity loss was observed at 50°C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0–12.2 range for 24 h at 30°C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol−1 (44.30 kJ mol−1). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30°C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3′-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k cat value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K m and k cat values were estimated at 0.655 μM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21×103 min−1, respectively.  相似文献   

14.
Occurrence of cellulase activity was demonstrated in the filtrates of germinating conidiospores and growing mycelia of P. oryzae. Activity and some properties of cellulase in the filtrate of mycelia grown on rice plant powder as carbon source were compared among various strains.

Cellulase activity (C1 and Cx enzymes; cellulose and carboxymethylcellulose as substrates, respectively) in the filtrate of germinating conidiospores was detected in the pathogenic T–l (Ken 53–33) strain as well as nonpathogenic 0 (THU 3 × 1) strain of P. oryzae. The activity was higher in the former than the latter strains. Cellulase activity (Cx enzyme) in the filtrate of growing mycelia was detected in the four strains used, T–l (Ken 53–33), C–3 (N 87), N–1 (H373), and 0 (THU 3 × 1). Cellulase activity (Cx enzyme) in the filtrate of mycelia was optimal at pH 5.0 and 40°C, and stable up to 40°C. Their properties did not differ significantly except for the pH-activity curve at alkaline side among various strains; but cellulase activity (C1 enzyme) was found to be correlated with their pathogenicity except for the case of C–3 strain.  相似文献   

15.
A thermophilic soil isolate—Bacillus sp. RS-12, grew optimally at 50°C and not below 40°C. Production of an extracellular lipase by this organism was substantially enhanced when the type and concentration of carbon and nitrogen sources and initial pH of the culture medium were consecutively optimized. The lipase production was found to be growth-associated with maximum secretion in the late exponential growth phase,i.e. 15h of incubation. The enzyme activity as high as 0.98 nkat/mL was obtained under optimum conditions. Tween 80 (0.5%) and yeast extract (0.5%) were found to be the best carbon and nitrogen sources inducing maximum enzyme yield with initial pH 8.0 at 50°C. The kinetic characteristics of the crude lipase indicated the highest activity at 50–55°C and pH 8.0. It had a half life of 60, 18 and 15 min at 65, 70 and 75°C, respectively.  相似文献   

16.
A gene encoding extracellular lipase was cloned and characterized from metagenomic DNA extracted from hot spring soil. The recombinant gene was expressed in E. coli and expressed protein was purified to homogeneity using hydrophobic interactions chromatography. The mature polypeptide consists of 388 amino acids with apparent molecular weight of 43 kDa. The enzyme displayed maximum activity at 50°C and pH 9.0. It showed thermal stability up to 40°C without any loss of enzyme activity. Nearly 80% enzyme activity was retained at 50°C even after incubation for 75 min. However above 50°C the enzyme displayed thermal instability. The half life of the enzyme was determined to be 5 min at 60°C. Interestingly the CD spectroscopic study carried out in the temperature range of 25–95°C revealed distortion in solution structure above 35°C. However the intrinsic tryptophan fluorescence spectroscopic study revealed that even with the loss of secondary structure at 35°C and above the tertiary structure was retained. With p-nitrophenyl laurate as a substrate, the enzyme exhibited a K m , V max and K cat of 0.73 ± 0.18 μM, 239 ± 16 μmol/ml/min and 569 s−1 respectively. Enzyme activity was strongly inhibited by CuCl2, HgCl2 and DEPC but not by PMSF, eserine and SDS. The protein retained significant activity (~70%) with Triton X-100. The enzyme displayed 100% activity in presence of 30% n-Hexane and acetone.  相似文献   

17.
《Process Biochemistry》2014,49(6):955-962
An extracellular protease from a newly isolated seawater haloalkaliphilic bacterium, haloalkaliphilic bacteria Ve2-20-91 [HM047794], was purified and characterized. The enzyme is a monomer with a 37.2 kDa estimated molecular weight. It catalyzed reactions in the pH range 8–11 and performed optimally at pH 10. While maximal activity occurred at 50 °C, the temperature profile shifted from 50 to 80 °C in 1–3 M NaCl. The enzyme's thermal stability was probed using circular dichroism (CD) spectroscopy with NaCl at 50 and 70 °C. The changes in the enzyme's secondary structure were also analyzed using Fourier transform infrared spectroscopy (FTIR). The N-terminal amino acid sequence GKDGPPGLCGFFGCI exhibited low homology with other bacterial proteases, which highlights the enzyme's novelty. The enzyme was labile in anionic surfactant (1% w/v SDS) but showed stability in non-ionic surfactants (Tween 20, Tween 80 and Triton X-100 all 1% v/v), commercial detergents, and oxidizing and reducing agents. The enzyme's excellent stability in commercial detergents highlights its potential as a detergent additive.  相似文献   

18.
A newly isolated Rhodococcus sp. LKE-028 (MTCC 5562) from soil samples of Gangotri region of Uttarakhand Himalayan produced a thermostable esterase. The enzyme was purified to homogeneity with purification fold 62.8 and specific activity 861.2 U mg?1 proteins along with 26.7% recovery. Molecular mass of the purified enzyme was 38 kDa and values of Km and Vmax were 525 nM and 1666.7 U mg?1 proteins, respectively. The esterase was active over a broad range of temperature (40–100 °C) and pH (7.0–12.0). The esterase was most active at pH 11.0. The optimum temperature of enzyme activity was 70 °C and the enzyme was completely stable after 3 h pre-incubation at 60 °C. Metal ions like Ca2+, Mg2+ and Co2+ stimulated enzyme activities. Purified esterase remarkably retained its activity with 10 M NaCl. Enzyme activity was slightly increased in presence of non-polar detergents (Tween 20, Tween 80 and Triton X 100), and compatible with oxidizing agents (H2O2) and reducing agents (β-mercaptoethanol). Activities of the enzyme was stimulated in presence of organic solvents like DMSO, benzene, toluene, methanol, ethyl alcohol, acetone, isoamyl alcohol after 10 days long incubation. The enzyme retained over 75% activity in presence of proteinase K. Besides hyperthermostability and halotolerancy the novelty of this enzyme is its resistance against protease.  相似文献   

19.
Abstract

The use of enzymes in many industrial applications has gained increasing importance in recent years due to their non-toxic, specific, and eco-friendly characteristics. However, two main reasons limiting their use in industry are production costs and instability under harsh conditions. We isolated thermophilic and halo-tolerant/halophilic bacteria from bio-deteriorated plastic waste. Among them, Bacillus mojavensis isolate TH309 exhibited excellent esterase secretion ability. Esterase production on sunflower seed meal increased approximately 20-fold (80.43?U/gds) with optimization of solid state medium using Plackett Burman design and response surface methodology Box Behnken design. The enzyme (BmEST) was purified 7.82-fold using ultrafiltration and anion-exchange techniques. The molecular weight of BmEST was estimated to be 30?kDa. BmEST demonstrated an optimal temperature and pH of 80?°C and 8.0, respectively, and was remarkable stable at 60–90?°C. BmEST exhibited high activity and stability in the presence of NaCl (5–20%). Furthermore, it was hyper-activated by n-pentane, acetone, hexane, DMSO, methanol, and ethanol. The apparent Km and Vmax values of BmEST were 1.28?mM and 23.88 µmol/min, respectively, with p-nitrophenol butyrate as a substrate. The enzyme caused a mass loss of poly(ε-caprolactone) films of 44% after 12?h hydrolysis. As a result, BmEST, with remarkable functional properties, presents a promising candidate to meet the needs of certain harsh biotechnological applications.  相似文献   

20.
Immobilized soybean β-amylase was prepared by using porous cellulose beads. The expressed activity of the β-amylase–cellulose beads conjugated below 35 mesh was 59–69% of the initial activity and the protein content was 10–13%. General properties of the conjugate were almost identical with those of the native enzyme except for the Km value. The Km value of the conjugate was 40mM and the Km value of the native enzyme was 0.6mM. This large difference was probably caused by pore structure, i.e., a pore diffusion problem. The film diffusion problem occurred at the flow rate below a linear velocity of 3 cm/min. Maximum maltose contents of the hydrolyzates prepared by the conjugate and the native enzyme were 69 and 71%, respectively. After a continuous column operation at 50°C for 17 days, the activity of the column was 60% of the activity. The half-life of the column at 40°C was 40 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号