共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling 总被引:3,自引:0,他引:3
Nemergut DR Townsend AR Sattin SR Freeman KR Fierer N Neff JC Bowman WD Schadt CW Weintraub MN Schmidt SK 《Environmental microbiology》2008,10(11):3093-3105
Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function. 相似文献
2.
3.
通过室内培养试验,研究了不同浓度氯嘧磺隆(20、200、2000 μg·kg-1土)单一施用及与尿素(120 mg· kg-1土)配合施用情况下,土壤微生物生物量碳、氮和土壤铵态氮、硝态氮随时间的动态变化规律.结果表明:各浓度氯嘧磺隆单独处理在整个培养期(60 d)中对微生物生物量碳、氮均有抑制作用,且浓度越高,后期抑制作用越强;各浓度氯嘧磺隆处理在培养前期对硝态氮、铵态氮没有明显影响,中期(15 d)能显著提高土壤中铵态氮的含量,后期(30 d后)显著提高了土壤中硝态氮的含量.尿素单独施用及与氯嘧磺隆配施均能在短时间内增加微生物生物量碳、氮,但随后配施处理的促进作用减弱;尿素单独和配施均能持久增加土壤中铵态氮、硝态氮含量. 相似文献
4.
In a field experiment we have examined the effect of long-term grassland management regimes (viz., intensive versus extensive) and dominant plant species (viz., Arrhenatherum elatius, Holcus lanatus and Dactylis glomerata) on soil organic carbon (SOC) build up, soil microbial communities using biomarker phospholipid fatty acids (PLFA), and the relationship between SOC and PLFAs of major groups of microorganisms (viz., bacteria, fungi, and actinomycetes). The results have revealed that changes in SOC were not significantly affected by the intensity of management or by the plant species composition or by their interaction. The amount of PLFA of each microbial group was affected weakly by management regime and plant species, but the canonical variance analysis (CVA), based on individual PLFA values, demonstrated significant (P<0.05) effects of management regime and plant species on the composition of microbial community. Positive and significant (P<0.01) relationships were observed between PLFA of bacteria (R2=0.47), fungi (R2=0.33), actinomycetes (R2=0.71) and total microbial PLFA (R2=0.53) and SOC content. 相似文献
5.
Rimvydas Juškaitis 《Biodiversity and Conservation》2008,17(14):3559-3565
The common dormouse (Muscardinus avellanarius) is a species included in Annex IV of the Habitat Directive and red-listed in many European countries. Monitoring of M. avellanarius is implemented in several countries using different methods. In Lithuania, regular control of standard bird nestboxes and marking of all dormice caught were used during 1984–1990 and 1999–2007. Nestboxes were spaced in a grid system at 50 m intervals in an area of 60 ha. Monitoring of the M. avellanarius population was carried out in a managed forest with varying levels of human activity occurring in most parts of the forest (felling of all understorey, selective felling of trees, clear felling, etc.). During the entire study period, the average density of the population was comparatively low (about 1 ind./ha in spring and 3 ind./ha in autumn), but stable and without substantial fluctuations in spite of considerable human activity. The forestry management operations that were used in different parts of the forest over different years had only temporary and localised negative effects on the abundance of M. avellanarius, and did not influence the whole population substantially. The spacing of nestboxes in a grid system in a large forest area increased the level of accuracy with which the monitoring scheme reflected the population status. This enabled both the state of the entire population of M. avellanarius and temporary changes in abundance in selected smaller plots to be tracked. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
6.
Matthias C. Rillig Bruce A. Caldwell Han A. B. Wösten Philip Sollins 《Biogeochemistry》2007,85(1):25-44
Mechanisms of soil organic carbon (C) and nitrogen (N) stabilization are of great interest, due to the potential for increased
CO2 release from soil organic matter (SOM) to the atmosphere as a result of global warming, and because of the critical role
of soil organic N in controlling plant productivity. Soil proteins are recognized increasingly as playing major roles in stabilization
and destabilization of soil organic C and N. Two categories of proteins are proposed: detrital proteins that are released
upon cell death and functional proteins that are actively released into the soil to fulfill specific functions. The latter
include microbial surface-active proteins (e.g., hydrophobins, chaplins, SC15, glomalin), many of which have structures that
promote their persistence in the soil, and extracellular enzymes, responsible for many decomposition and nutrient cycling
transformations. Here we review information on the nature of soil proteins, particularly those of microbial origin, and on
the factors that control protein persistence and turnover in the soil. We discuss first the intrinsic properties of the protein
molecule that affect its stability, next possible extrinsic stabilizing influences that arise as the proteins interact with
other soil constituents, and lastly controls on accessibility of proteins at coarser spatial scales involving microbial cells,
clay particles, and soil aggregates. We conclude that research at the interface between soil science and microbial physiology
will yield rapid advances in our understanding of soil proteins. We suggest as research priorities determining the relative
abundance and turnover time (age) of microbial versus plant proteins and of functional microbial proteins, including surface-active
compounds. 相似文献
7.
8.
Wakelin SA Colloff MJ Harvey PR Marschner P Gregg AL Rogers SL 《FEMS microbiology ecology》2007,59(3):661-670
The effects of agronomic management practices on the soil microbial community were investigated in a maize production system in New South Wales, Australia. The site has been intensively studied to measure the impact of stubble management and N-fertilizer application on greenhouse gas emissions (CO(2) and N(2)O), N-cycling, pathology, soil structure and yield. As all of these endpoints can be regulated by microbial processes, the microbiology of the system was examined. Soil samples were taken after a winter fallow period and the diversity of the bacterial and fungal communities was measured using PCR-denaturing gradient gel electrophoresis. Stubble and N shifted the structure of bacterial and fungal communities with the primary driver being stubble addition on the fungal community structure (P<0.05 for all effects). Changes in C, N (total and NO(3)), K and Na, were correlated (P<0.05) with variation in the microbial community structure. Quantitative PCR showed that nifH (nitrogen fixation) and napA (denitrification) gene abundance increased upon stubble retention, whereas amoA gene numbers were increased by N addition. These results showed that the management of both stubble and N have significant and long-term impacts on the size and structure of the soil microbial community at phylogenetic and functional levels. 相似文献
9.
Mineralization of carbon and nitrogen in soil samples taken from three fertilized pine stands: Long-term effects 总被引:1,自引:0,他引:1
Pertti J. Martikainen Tuula Aarnio Veli-Matti Taavitsainen Lauri Päivinen Kalervo Salonen 《Plant and Soil》1989,114(1):99-106
Seven years after fertilization the rate of CO2 production in the soil samples taken from the organic horizons of a poor pine forest site (Calluna vulgaris site type), treated with urea or ammonium nitrate with lime, was lower than that in the unfertilized soil. The same trend was also observed in samples of theEmpetrum-Calluna site type 14 years after fertilization. In the more fertileVaccinium myrtillus site type these rapidly-soluble N fertilizers had a long-term enhancing effect on the production of CO2. Apatite and biotite eliminated the decreasing effect of urea on the production of CO2. One reason for this might be the long-term increase in soil pH caused by apatite and biotite, or their constituents (Ca, Mg, K, P). Nitroform (a slow-releasing N fertilizer) had no statistically significant effect on the production of CO2 in soil samples from any of the forest types. Despite the high N mineralization in the samples from nitroform fertilized soils there was no nitrification, and the high content of total N indicated that after nitroform fertilization the losses of N were low.The correlation between the net mineralization values for C (CO2 production) and N was poor. However, multiple linear regression analysis, which also took into account the effect of nutrients and pH, indicated that there was a link between the mineralization of C and N. 相似文献
10.
Background and Aims
The post-fire mineral N pool is relevant for plant regrowth. Depending on the plant regeneration strategies, this pool can be readily used or lost from the plant–soil system. Here we studied the retention of the post-fire mineral N pool in the system over a period of 12 years in three contrasted Mediterranean plant communities.Methods
Three types of vegetation (grassland, mixed shrub-grassland and shrubland) were subjected to experimental fires. We then monitored the fate of 15?N-tracer applied to the mineral N pool in soils and in plants over 12 years.Results
The plant community with legumes (mixed shrub-grasslands) showed the lowest soil retention of 15?N-tracer during the first 9 months after fire. Between years 6 and 12 post-fire, a drought promoted plant and litter deposition. Coinciding with this period, 15?N-recovery in the first 15 cm of the soil increased in all cases, except in mixed shrub-grassland. This lack of increase may be attributable to the input of impoverished 15?N plant residues and enhanced leaching and denitrification, possibly by N2-fixing shrubs. After the drought, the deepest soil layer showed large decreases in total N and 15?N-recovery, which were possibly caused by N mineralization.Conclusions
Twelve years after the fires, plant communities without N2-fixing shrubs recycled a significant part of the N derived from the post-fire mineral N and this pool continued to interact in the plant–soil system. 相似文献11.
12.
Land-use and land-cover strongly influence soil properties such as the amount of soil organic carbon (SOC), aggregate structure and SOC turnover processes. We studied the effects of a vegetation shift from forest to grassland 90 years ago in soils derived from andesite material on Barro Colorado Island (BCI), Panama. We quantified the amount of carbon (C) and nitrogen (N) and determined the turnover of C in bulk soil, water stable aggregates (WSA) of different size classes (<53 μm, 53–250 μm, 250–2000 μm and 2000–8000 μm) and density fractions (free light fraction, intra-aggregate particulate organic matter and mineral associated soil organic C). Total SOC stocks (0–50 cm) under forest (84 Mg C ha−1) and grassland (64 Mg C ha−1) did not differ significantly. Our results revealed that vegetation type did not have an effect on aggregate structure and stability. The investigated soils at BCI did not show higher C and N concentrations in larger aggregates, indicating that organic material is not the major binding agent in these soils to form aggregates. Based on δ13C values and treating bulk soil as a single, homogenous C pool we estimated a mean residence time (MRT) of 69 years for the surface layer (0–5 cm). The MRT varied among the different SOC fractions and among depth. In 0–5 cm, MRT of intra-aggregate particulate organic matter (iPOM) was 29 years; whereas mineral associated soil organic C (mSOC) had a MRT of 124 years. These soils have substantial resilience to C and N losses because the >90% of C and N is associated with mSOC, which has a comparatively long MRT. 相似文献
13.
Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park 总被引:8,自引:0,他引:8
Microorganisms are largely responsible for soil nutrient cycling and energy flow in terrestrial ecosystems. Although soil
microorganisms are affected by topography and grazing, little is known about how these two variables may interact to influence
microbial processes. Even less is known about how these variables influence microorganisms in systems that contain large populations
of free-roaming ungulates. In this study, we compared microbial biomass size and activity, as measured by in situ net N mineralization,
inside and outside 35- to 40-year exclosures across a topographic gradient in northern Yellowstone National Park. The objective
was to determine the relative effect of topography and large grazers on microbial biomass and nitrogen mineralization. Microbial
C and N varied by almost an order of magnitude across sites. Topographic depressions that contained high plant biomass and
fine-textured soils supported the greatest microbial biomass. We found that plant biomass accurately predicted microbial biomass
across our sites suggesting that carbon inputs from plants constrained microbial biomass. Chronic grazing neither depleted
soil C nor reduced microbial biomass. We hypothesize that microbial populations in grazed grasslands are sustained mainly
by inputs of labile C from dung deposition and increased root turnover or root exudation beneath grazed plants. Mineral N
fluxes were affected more by grazing than topography. Net N mineralization rates were highest in grazed grassland and increased
from dry, unproductive to mesic, highly productive communities. Overall, our results indicate that topography mainly influences
microbial biomass size, while mineral N fluxes (microbial activity) are affected more by grazing in this grassland ecosystem.
Received: 4 June 1997 / Accepted: 16 December 1997 相似文献
14.
长期不同施肥对石灰性土壤微生物磷及磷酸酶的影响 总被引:13,自引:2,他引:13
采用氯仿熏蒸提取法和磷酸苯二钠比色法分别测定了长期土壤培肥定位试验地所设置的不施肥、单施化肥、玉米秸秆 (低、中、高量 ) 化肥、厩肥 化肥以及休闲 (低量秸秆 化肥 )处理土壤微生物磷和磷酸酶活性。结果表明 ,各施肥处理均不同程度提高了土壤微生物磷 ;除休闲处理外 ,各施肥处理也不同程度提高了磷酸酶活性 ,这有利于为作物生长创造一种良好的土壤条件。石灰性土壤微生物磷与土壤全磷、速效磷之间存在明显的正相关 ,表明要改善石灰性土壤P利用率低的状况 ,提高土壤微生物磷不失为一条行之有效的生物学途径 相似文献
15.
《中国科学:生命科学英文版》2017,(4)
正Dear Editor,Phosphorus(P)ultimately comes from rock weathering in natural ecosystems(Porder et al.,2007),and thus solubilization of rock phosphate plays a crucial ecological role in P supply for the ecosystems.Especially,microbial solubilization of rock phosphate is a vital process for the replenishment of available P in alpine ecosystems where the weathering degree of soil is low.The phosphate solubilizing microorganisms(PSM),major participants in the process,are directly affected 相似文献
16.
Wang Ruzhen Wu Hui Sardans Jordi Li Tianpeng Liu Heyong Peñuelas Josep Dijkstra Feike A. Jiang Yong 《Plant and Soil》2020,457(1-2):407-420
Plant and Soil - Soil aggregates constitute spatially-separated microbial habitats and architectural units for biogeochemical reactions. However, little is known about how aggregates varying in... 相似文献
17.
The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management 总被引:1,自引:0,他引:1
Calcareous grasslands represent local hotspots of biodiversity in large parts of Central and Northern Europe. They support a great number of rare species which are adapted to these xerothermic habitats. Due to massive changes in land use, calcareous grasslands have become a rare habitat type and their conservation has been given a high priority in the habitats directive of the European Union. It is well known that grassland management may affect biodiversity substantially. However, the quality of calcareous grasslands is also influenced by abiotic conditions, such as aspect (i.e. sun exposure), which affects the local mesoclimate. We studied the combined effects of aspect and grassland management on Orthoptera diversity on 16 sites in Central Germany, in an unbalanced crossed design with three factors: aspect, management type and management intensity. For both response variables (diversity and abundance) we obtained a similar pattern. South-facing pastures maintained a greater diversity than north-facing pastures, but both had a greater diversity than extensively used meadows. Intensively used meadows maintained the lowest diversity and abundances. A multivariate analysis revealed that the abundance of rare Orthoptera species correlated with bare ground cover and forb cover, both of which were greatest at south-facing pastures. Our results suggest that grazing is a more suitable management for maintaining a high biodiversity in calcareous grasslands than mowing. Moreover, the mesoclimate (in this studied measured by its surrogate: aspect) is a crucial factor determining species richness and needs to be considered in reserve planning. 相似文献
18.
Christopher Swanston Peter S. Homann Bruce A. Caldwell David D. Myrold Lisa Ganio Phillip Sollins 《Biogeochemistry》2004,70(2):229-252
Nitrogen addition may alter the decomposition rate for different organic-matter pools in contrasting ways. Using a paired-plot design, we sought to determine the effects of long-term elevated N on the stability of five organic-matter pools: organic horizons (Oe+a), whole mineral soil (WS), mineral soil fractions including the light fraction (LF), heavy fraction (HF), and a physically recombined fraction (RF). These substrates were incubated for 300 days, and respiration, mineralized N, and active microbial biomass were measured. Samples with elevated N gave 15% lower cumulative respiration for all five substrates. Over the 300-day incubation, the Oe+a gave twice the cumulative respiration (gCkg–1 initial C) as the LF, which gave slightly higher respiration than the HF. Respiration was 35% higher for the WS than for the RF. Mineralized N was similar between N treatments and between the LF and HF. Net N mineralized by the LF over the course of the 300-day incubation decreased with higher C:N ratio, due presumably to N immobilization to meet metabolic demands. The pattern was opposite for HF, however, which could be explained by a release of N in excess of metabolic demands due to recalcitrance of the HF organic matter. Mineralized N increased with respiration for the HF but showed no pattern, or perhaps even decreased, for the LF. WS and RF showed decreasing active microbial biomass near the end of the incubation, which corresponded with decreasing respiration and increasing nitrate. Our results show that long-term elevated N stabilized organic matter in whole soil and soil fractions. 相似文献
19.
Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage 总被引:1,自引:0,他引:1
Mycorrhizal fungi can contribute to soil carbon sequestration by immobilizing carbon in living fungal tissues and by producing recalcitrant compounds that remain in the soil following fungal senescence. We hypothesized that nitrogen (N) fertilization would decrease these carbon stocks, because plants should reduce investment of carbon in mycorrhizal fungi when N availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in the top 10 cm of soil in control and N-fertilized plots within three Alaskan boreal ecosystems that represented different recovery stages following severe fire. Pools of mycorrhizal carbon included root-associated AM and ECM structures; soil-associated AM hyphae; and glomalin, a glycoprotein produced by AM fungi. Total mycorrhizal carbon pools decreased by approximately 50 g C m−2 in the youngest site under N fertilization, and this reduction was driven mostly by glomalin. Total mycorrhizal carbon did not change significantly in the other sites. Root-associated AM structures were more abundant under N fertilization across all sites, and root-associated ECM structures increased marginally significantly. We found no significant N effects on AM hyphae. Carbon sequestered within living mycorrhizal structures (0.051–0.21 g m−2 ) was modest compared with that of glomalin (33–203 g m−2 ). We conclude that our hypothesis was only supported in relation to glomalin stocks within one of the three study sites. As N effects on glomalin were inconsistent among sites, an understanding of the mechanisms underlying this variation would improve our ability to predict ecosystem feedbacks to global change. 相似文献
20.
The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China 总被引:4,自引:0,他引:4