首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled climate–ecosystem models predict significant alteration of temperate forest biome distribution in response to climate warming. Temperate forest biomes contain approximately 10% of global soil carbon (C) stocks and therefore any change in their distribution may have significant impacts on terrestrial C budgets. Using the Sierra Nevada as a model system for temperate forest soils, we examined the effects of temperature and soil mineralogy on soil C mineralization. We incubated soils from three conifer biomes dominated by ponderosa pine (PP), white fir (WF), and red fir (RF) tree species, on granite (GR), basalt (BS), and andesite (AN) parent materials, at three temperatures (12.5°C, 7.5°C, 5.0°C). AN soils were dominated by noncrystalline materials (allophane, Al‐humus complexes), GR soils by crystalline minerals (kaolinite, vermiculite), and BS soils by a mix of crystalline and noncrystalline materials. Soil C mineralization (ranging from 1.9 to 34.6 [mg C (g soil C)?1] or 0.1 to 2.3 [mg C (g soil)?1]) differed significantly between parent materials in all biomes with a general pattern of ANδ13C values of respired CO2 suggest greater decomposition of recalcitrant soil C compounds with increasing temperature, indicating a shift in primary C source utilization with temperature. Our results demonstrate that soil mineralogy moderates soil C mineralization and that soil C response to temperature includes shifts in decomposition rates, mineralizable pool size, and primary C source utilization.  相似文献   

2.
In forests, common mycorrhizal networks (CMNs) often connect the roots of neighbouring plants. Observations of material flows between hosts connected by CMNs have given rise to the hypothesis that CMNs limit the negative effects of competition by overstorey trees on seedlings recruiting underneath them. I conducted an experiment in a temperate forest dominated by ectomycorrhizal conifers and hardwoods to isolate the effects of CMNs on the growth and survival of four tree species that co‐occur in the understorey. Ectomycorrhizal networks had strong negative effects on the survival of an arbuscular mycorrhizal species, Acer rubrum, and neutral effects on the survival of three ectomycorrhizal species, Betula allegheniensis, Pinus strobus, and Tsuga canadensis. CMNs had positive effects on the growth of at least one ectomycorrhizal species, P. strobus. Interspecific differences in juvenile responses to CMNs may influence forest community development, promoting coexistence of some tree species while limiting the success of others.  相似文献   

3.
The accumulation of soil carbon (C) is regulated by a complex interplay between abiotic and biotic factors. Our study aimed to identify the main drivers of soil C accumulation in the boreal forest of eastern North America. Ecosystem C pools were measured in 72 sites of fire origin that burned 2–314 years ago over a vast region with a range of ? mean annual temperature of 3°C and one of ? 500 mm total precipitation. We used a set of multivariate a priori causal hypotheses to test the influence of time since fire (TSF), climate, soil physico‐chemistry and bryophyte dominance on forest soil organic C accumulation. Integrating the direct and indirect effects among abiotic and biotic variables explained as much as 50% of the full model variability. The main direct drivers of soil C stocks were: TSF >bryophyte dominance of the FH layer and metal oxide content >pH of the mineral soil. Only climate parameters related to water availability contributed significantly to explaining soil C stock variation. Importantly, climate was found to affect FH layer and mineral soil C stocks indirectly through its effects on bryophyte dominance and organo‐metal complexation, respectively. Soil texture had no influence on soil C stocks. Soil C stocks increased both in the FH layer and mineral soil with TSF and this effect was linked to a decrease in pH with TSF in mineral soil. TSF thus appears to be an important factor of soil development and of C sequestration in mineral soil through its influence on soil chemistry. Overall, this work highlights that integrating the complex interplay between the main drivers of soil C stocks into mechanistic models of C dynamics could improve our ability to assess C stocks and better anticipate the response of the boreal forest to global change.  相似文献   

4.
In southwest France, sandy spodosols have developed from Quaternary sandy eolian deposits. On these soils, numerous forest lands have been converted to continuous intensive maize cropping. A chronosequence study is realized by comparing organic C pools and 13C natural abundance of one forested and 6 agricultural sites, whose ages of cultivation range from 4 to 32 yr. 13C ratio is found to increase with time of cultivation. After 3 decades of intensive maize cropping, about half of the initial organic C content in the forest topsoil layer has disappeared. The fraction of C derived from maize crop increases during the first decades of cultivation, but its level is significantly lower than those observed in other soils, which indicates a high mineralization rate of organic C. In this context, soil characteristics associated to intensive agricultural practices lead to a rapid and large loss of C, whereas inputs from maize seem to have only a very small long-term contribution.  相似文献   

5.
Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above‐ and belowground processes. The model was able to represent decadal‐scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate‐related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal‐scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate changes for subsequent decades.  相似文献   

6.
7.
Seasonal variability in biogeochemical signatures was used to elucidate the dominant pathways of soil microbial metabolism and elemental cycling in an oligotrophic mangrove system. Three interior dwarf mangrove habitats (Twin Cays, Belize) where surface soils were overlain by microbial mats were sampled during wet and dry periods of the year. Porewater equilibration meters and standard biogeochemical methods provided steady-state porewater profiles of pH, chloride, sulfate, sulfide, ammonium, nitrate/nitrite, phosphate, dissolved organic carbon, nitrogen, and phosphorus, reduced iron and manganese, dissolved inorganic carbon, methane and nitrous oxide. During the wet season, the salinity of overlying pond water and shallow porewaters decreased. Increased rainwater infiltration through soils combined with higher tidal heights appeared to result in increased organic carbon inventories and more reducing soil porewaters. During the dry season, evaporation increased both surface water and porewater salinities, while lower tidal heights resulted in less reduced soil porewaters. Rainfall strongly influenced inventories of dissolved organic carbon and nitrogen, possibly due to more rapid decay of mangrove litter during the wet season. During both times of year, high concentrations of reduced metabolites accumulated at depth, indicating substantial rates of organic matter mineralization coupled primarily to sulfate reduction. Nitrous oxide and methane concentrations were supersaturated indicating considerable rates of nitrification and/or incomplete denitrification and methanogenesis, respectively. More reducing soil conditions during the wet season promoted the production of reduced manganese. Contemporaneous activity of sulfate reduction and methanogenesis was likely fueled by the presence of noncompetitive substrates. The findings indicate that these interior dwarf areas are unique sites of nutrient and energy regeneration and may be critical to the overall persistence and productivity of mangrove-dominated islands in oligotrophic settings.  相似文献   

8.
Human‐induced changes of the environment and their possible impacts on temperate forest understory plant communities have been examined in many studies. However, the relative contribution of individual environmental factors to these changes in the herb layer is still unclear. In this study, we used vegetation survey data covering a time period of 21 years and collected from 143 permanent plots in the Northern Limestone Alps, Austria. Data on soil chemistry (49 plots), light condition (51 plots), soil temperature and moisture (four and six plots), disturbance (all plots), climate (one station in a clearing area), and airborne sulfur (S) and nitrogen (N) deposition (two forest stands) were available for analyses. We used these data together with plot mean Ellenberg indicator values in a path analysis to attribute their relative contributions to observed vegetation changes. Our analysis reveals a strong directional shift of the forest understory plant community. We found strong evidence for a recovery of the ground‐layer vegetation from acidification as response to decreased S deposition. We did not observe a community response to atmospheric N deposition, but we found a response to altered climatic conditions (thermophilization and drying). The path analysis revealed that changes in the light regime, which were related to small‐scale disturbances, had most influence on herb layer community shifts. Thermophilization and drying were identified as drivers of understory community changes independent of disturbance events.  相似文献   

9.
The effects of atmospheric nitrogen (N) deposition on organic matter decomposition vary with the biochemical characteristics of plant litter. At the ecosystem‐scale, net effects are difficult to predict because various soil organic matter (SOM) fractions may respond differentially. We investigated the relationship between SOM chemistry and microbial activity in three northern deciduous forest ecosystems that have been subjected to experimental N addition for 2 years. Extractable dissolved organic carbon (DOC), DOC aromaticity, C : N ratio, and functional group distribution, measured by Fourier transform infrared spectra (FTIR), were analyzed for litter and SOM. The largest biochemical changes were found in the sugar maple–basswood (SMBW) and black oak–white oak (BOWO) ecosystems. SMBW litter from the N addition treatment had less aromaticity, higher C : N ratios, and lower saturated carbon, lower carbonyl carbon, and higher carboxylates than controls; BOWO litter showed opposite trends, except for carbonyl and carboxylate contents. Litter from the sugar maple–red oak (SMRO) ecosystem had a lower C : N ratio, but no change in DOC aromaticity. For SOM, the C : N ratio increased with N addition in SMBW and SMRO ecosystems, but decreased in BOWO; N addition did not affect the aromaticity of DOC extracted from mineral soil. All ecosystems showed increases in extractable DOC from both litter and soil in response to N treatment. The biochemical changes are consistent with the divergent microbial responses observed in these systems. Extracellular oxidative enzyme activity has declined in the BOWO and SMRO ecosystems while activity in the SMBW ecosystem, particularly in the litter horizon, has increased. In all systems, enzyme activities associated with the hydrolysis and oxidation of polysaccharides have increased. At the ecosystem scale, the biochemical characteristics of the dominant litter appear to modulate the effects of N deposition on organic matter dynamics.  相似文献   

10.
Responses of soil organic carbon (SOC) cycling and C budget in forest ecosystems to elevated nitrogen (N) deposition are divergent. Little is known about the N critical loads for the shift between gain and loss of SOC storage in the old-growth temperate forest of Northeast China. The objective of this study was to investigate the nonlinear responses of SOC concentration and composition to multiple rates of N addition, as well as the microbial mechanisms responsible for SOC alteration under N enrichment. Nine rates of urea addition (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha?1 year?1) with 4 replicates for each treatment were conducted. Soil samples in the 0–10 cm mineral layer were taken after 3 years of N fertilization. Soil aggregate size distribution and SOC physical fractionation were performed to examine SOC dynamics. Phospholipid fatty acid (PLFA) technique was used to measure the abundance and structure of microbial community. Three years of N addition led to significant increases in the concentrations of soil particulate organic C and aggregate-associated organic C fractions only. The responses of total N and each labile SOC fraction to the rates of N addition followed Gaussian equations, with the N critical loads being estimated to be between 80 and 100 kg N ha?1 year?1. The change in SOC concentration (ΔSOC) was positively correlated with the changes in aggregate associated OC (r2 > 0.80) and POC concentrations (r2 > 0.50). Significant correlations among the concentrations of labile SOC fractions, the percentages of soil aggregates, and the abundances of microbial PLFAs were observed, which implies a close linkage between microbial community structure and SOC accumulation and stability. Our results suggest that increase in soil moisture and shift of microbial community structure could control the critical N load for the switch between C accumulation and loss. The current N deposition rate (~ 11 kg N ha?1 year?1) to the northeast China’s forests is favorable for soil C accumulation over the short term.  相似文献   

11.
12.
Pine plantations of the southeastern USA are regional carbon (C) sinks. In spite of large increases in woody biomass due to advanced growing systems, studies have shown little or even negative effects on the C content of the extremely sandy soils of this region. Hence, it is important to understand the mechanisms that determine the impact of intensive forest management on soil organic carbon (SOC) sequestration. This study was conducted to examine the C profile in a 4-year-old loblolly pine (Pinus taeda L.) plantation managed under two levels of management intensity (chemical understory control and fertilizer inputs). Soil organic C and nitrogen (N) pools were evaluated using two size fractionation methods, dry and wet sieving (2000–250 μm, 250–150 μm, 150–53 μm and <53 μm). Dry sieving was preferred over wet sieving for soil size fractionation, as it preserved more structure and water-soluble SOC components such as esters and amides and did not affect the N distribution. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) spectra were used to examine the chemical composition of the size fractions, which showed the presence of recently added organic matter in the largest sand fraction, as well as more decomposed organic matter in the <53 μm fraction. Intensive forest management reduced SOC in all three 2000–53 μm fractions, most likely due to reduced root input of understory plants that were controlled using herbicides. The 2000–250 μm fractions contained nearly half of the total SOC and showed a 23% decrease in C content due to the intensive management regime. Results from this study indicated the significance and responsiveness of sand size SOC fractions in Florida Spodosols. Results also showed that reductions in SOC due to intensive management occurred after four years and highlighted the need to understand the long-term impacts and the mechanisms responsible. Responsible Editor: Barbara Wick  相似文献   

13.
Pyrogenic organic matter (PyOM) decomposes on centennial timescale in soils, but the processes regulating its decay are poorly understood. We conducted one of the first studies of PyOM and wood decomposition in a temperate forest using isotopically labeled organic substrate, and quantified microbial incorporation and physico‐chemical transformations of PyOM in situ. Stable‐isotope (13C and 15N) enriched PyOM and its precursor wood were added to the soil at 2 cm depth at ambient (N0) and increased (N+) levels of nitrogen fertilization. The carbon (C) and nitrogen (N) of added PyOM or wood were tracked through soil to 15 cm depth, in physically separated soil density fractions and in benzene polycarboxylic acids (BPCA) molecular markers. After 10 months in situ, more PyOM‐derived C (>99% of initial 13C‐PyOM) and N (90% of initial 15N‐PyOM) was recovered than wood derived C (48% of 13C‐wood) and N (89% under N0 and 48% under N+). PyOM‐C and wood‐C migrated at the rate of 126 mm yr?1 with 3–4% of PyOM‐C and 4–8% of wood‐C recovered below the application depth. Most PyOM C was recovered in the free light fraction (fLF) (74%), with 20% in aggregate‐occluded and 6% in mineral associated fractions – fractions that typically have much slower turnover times. In contrast, wood C was recovered mainly in occluded (33%) or dense fraction (27%). PyOM addition induced loss of native C from soil (priming effect), particularly in fLF (13%). The total BPCA‐C content did not change but after 10 months the degree of aromatic condensation of PyOM decreased, as determined by relative contribution of benzene hexa‐carboxylic acid (B6CA) to the total BPCA C. Soil microbial biomass assimilated 6–10% of C from the wood, while PyOM contributions was negligible (0.14–0.18%). The addition of N had no effect on the dynamics of PyOM while limited effect on wood.  相似文献   

14.
Aims Tree species richness has been reported to have positive effects on aboveground biomass and productivity, but little is known about its effects on soil organic carbon (SOC) accumulation.  相似文献   

15.
Soil organic carbon (SOC) can be stabilized via association with iron (Fe) and aluminum (Al) minerals. Fe and Al can be strong predictors of SOC storage and turnover in soils with relatively high extractable metals content and moderately acidic to circumneutral pH. Here we test whether pedogenic Fe and Al influence SOC content and turnover in soils with low Fe and Al content and acidic pH. In soils from four sites spanning three soil orders, we quantified the amount of Fe and Al in operationally-defined poorly crystalline and organically-complexed phases using selective chemical dissolution applied to the soil fraction containing mineral-associated carbon. We evaluated the correlations of Fe and Al concentrations, mean annual precipitation (MAP), mean annual temperature (MAT), and pH with SOC content and 14C-based turnover times. We found that poorly crystalline Fe and Al content predicted SOC turnover times (p < 0.0001) consistent with findings of previous studies, while organically-complexed Fe and Al content was a better predictor of SOC concentration (p < 0.0001). Greater site-level MAP (p < 0.0001) and colder site-level MAT (p < 0.0001) were correlated with longer SOC turnover times but were not correlated with SOC content. Our results suggest that poorly crystalline Fe and Al effectively slow the turnover of SOC in these acidic soils, even when their combined content in the soil is less than 2% by mass. However, in the strongly acidic Spodosol, organo-metal complexes tended to be less stable resulting in a more actively cycling mineral-associated SOC pool.  相似文献   

16.
17.

Aim

To determine, for arable land in a temperate area, the effect of tree establishment and intercropping treatments, on the distribution of roots and soil organic carbon to a depth of 1.5 m.

Methods

A poplar (Populus sp.) silvoarable agroforestry experiment including arable controls was established on arable land in lowland England in 1992. The trees were intercropped with an arable rotation or bare fallow for the first 11 years, thereafter grass was allowed to establish. Coarse and fine root distributions (to depths of up to 1.5 m and up to 5 m from the trees) were measured in 1996, 2003, and 2011. The amount and type of soil carbon to 1.5 m depth was also measured in 2011.

Results

The trees, initially surrounded by arable crops rather than fallow, had a deeper coarse root distribution with less lateral expansion. In 2011, the combined length of tree and understorey vegetation roots was greater in the agroforestry treatments than the control, at depths below 0.9 m. Between 0 and 1.5 m depth, the fine root carbon in the agroforestry treatment (2.56 t ha-1) was 79% greater than that in the control (1.43 t ha?1). Although the soil organic carbon in the top 0.6 m under the trees (161 t C ha?1) was greater than in the control (142 t C ha?1), a tendency for smaller soil carbon levels beneath the trees at lower depths, meant that there was no overall tree effect when a 1.5 m soil depth was considered. From a limited sample, there was no tree effect on the proportion of recalcitrant soil organic carbon.

Conclusions

The observed decline in soil carbon beneath the trees at soil depths greater than 60 cm, if observed elsewhere, has important implication for assessments of the role of afforestation and agroforestry in sequestering carbon.  相似文献   

18.
The impact of deforestation on soil organic carbon (SOC) stocks is important in the context of climate change and agricultural soil use. Trends of SOC stock changes after agroecosystem establishment vary according to the spatial scale considered, and factors explaining these trends may differ sometimes according to meta‐analyses. We have reviewed the knowledge about changes in SOC stocks in Amazonia after the establishment of pasture or cropland, sought relationships between observed changes and soil, climatic variables and management practices, and synthesized the δ13C measured in pastures. Our dataset consisted of 21 studies mostly synchronic, across 52 sites (Brazil, Colombia, French Guiana, Suriname), totalling 70 forest–agroecosystem comparisons. We found that pastures (n = 52, mean age = 17.6 years) had slightly higher SOC stocks than forest (+6.8 ± 3.1 %), whereas croplands (n = 18, mean age = 8.7 years) had lower SOC stocks than forest (?8.5 ± 2.9 %). Annual precipitation and SOC stocks under forest had no effect on the SOC changes in the agroecosystems. For croplands, we found a lower SOC loss than other meta‐analyses, but the short time period after deforestation here could have reduced this loss. There was no clear effect of tillage on the SOC response. Management of pastures, whether they were degraded/nominal/improved, had no significant effect on SOC response. δ13C measurements on 16 pasture chronosequences showed that decay of forest‐derived SOC was variable, whereas pasture‐derived SOC was less so and was characterized by an accumulation plateau of 20 Mg SOC ha?1 after 20 years. The large uncertainties in SOC response observed could be derived from the chronosequence approach, sensitive to natural soil variability and to human management practices. This study emphasizes the need for diachronic and long‐term studies, associated with better knowledge of agroecosystem management.  相似文献   

19.
There is still much uncertainty as to how wildfire affects the accumulation of burn residues (such as black carbon (BC)) in the soil, and the corresponding changes in soil organic carbon (SOC) composition in boreal forests. We investigated SOC and BC composition in black spruce forests on different landscape positions in Alaska, USA. Mean BC stocks in surface mineral soils (0.34 ± 0.09 kg C m?2) were higher than in organic soils (0.17 ± 0.07 kg C m?2), as determined at four sites by three different 13C Nuclear Magnetic Resonance Spectroscopy-based techniques. Aromatic carbon, protein, BC, and the alkyl:O-alkyl carbon ratio were higher in mineral soil than in organic soil horizons. There was no trend between mineral soil BC stocks and fire frequencies estimated from lake sediment records at four sites, and soil BC was relatively modern (<54–400 years, based on mean Δ14C ranging from 95.1 to ?54.7‰). A more extensive analysis (90 soil profiles) of mineral soil BC revealed that interactions among landscape position, organic layer depth, and bulk density explained most of the variance in soil BC across sites, with less soil BC occurring in relatively cold forests with deeper organic layers. We suggest that shallower organic layer depths and higher bulk densities found in warmer boreal forests are more favorable for BC production in wildfire, and more BC is integrated with mineral soil than organic horizons. Soil BC content likely reflected more recent burning conditions influenced by topography, and implications of this for SOC composition (e.g., aromaticity and protein content) are discussed.  相似文献   

20.
暖温带落叶阔叶林动态变化的模拟研究   总被引:3,自引:0,他引:3  
桑卫国 《生态学报》2004,24(6):1194-1198
用森林动态林窗模型 FORET1模拟了暖温带落叶阔叶林的长期变化特征。模型参数取自暖温带地区长期森林研究和经营的历史数据 ,对过去数据中缺少的参数进行了实地测定 ,并用观测的数据对模型作了检验。结果表明模型能较好地模拟暖温带落叶阔叶林的长期动态变化特征。通过模拟可以看出 ,森林的净初级生产力没有明显变化规律且极度不稳定 ,峰值出现在30 a左右 ,相似于世界上其它地区森林动态格局变化 ,生物量格局呈循环状态变化 ,循环周期大致在 110 a左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号