首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the prediction of bone remodelling processes after total hip replacement (THR), modelling of the subject-specific geometry is now state-of-the-art. In this study, we demonstrate that inclusion of subject-specific loading conditions drastically influences the calculated stress distribution, and hence influences the correlation between calculated stress distributions and changes in bone mineral density (BMD) after THR.For two patients who received cementless THR, personalized finite element (FE) models of the proximal femur were generated representing the pre- and post-operative geometry. FE analyses were performed by imposing subject-specific three-dimensional hip joint contact forces as well as muscle forces calculated based on gait analysis data. Average values of the von Mises stress were calculated for relevant zones of the proximal femur. Subsequently, the load cases were interchanged and the effect on the stress distribution was evaluated. Finally, the subject-specific stress distribution was correlated to the changes in BMD at 3 and 6 months after THR.We found subject-specific differences in the stress distribution induced by specific loading conditions, as interchanging of the loading also interchanged the patterns of the stress distribution. The correlation between the calculated stress distribution and the changes in BMD were affected by the two-dimensional nature of the BMD measurement.Our results confirm the hypothesis that inclusion of subject-specific hip contact forces and muscle forces drastically influences the stress distribution in the proximal femur. In addition to patient-specific geometry, inclusion of patient-specific loading is, therefore, essential to obtain accurate input for the analysis of stress distribution after THR.  相似文献   

2.
The equine metacarpophalangeal (MCP) joint is frequently injured, especially by racehorses in training. Most injuries result from repetitive loading of the subchondral bone and articular cartilage rather than from acute events. The likelihood of injury is multi-factorial but the magnitude of mechanical loading and the number of loading cycles are believed to play an important role. Therefore, an important step in understanding injury is to determine the distribution of load across the articular surface during normal locomotion. A subject-specific finite-element model of the MCP joint was developed (including deformable cartilage, elastic ligaments, muscle forces and rigid representations of bone), evaluated against measurements obtained from cadaver experiments, and then loaded using data from gait experiments. The sensitivity of the model to force inputs, cartilage stiffness, and cartilage geometry was studied. The FE model predicted MCP joint torque and sesamoid bone flexion angles within 5% of experimental measurements. Muscle–tendon forces, joint loads and cartilage stresses all increased as locomotion speed increased from walking to trotting and finally cantering. Perturbations to muscle–tendon forces resulted in small changes in articular cartilage stresses, whereas variations in joint torque, cartilage geometry and stiffness produced much larger effects. Non-subject-specific cartilage geometry changed the magnitude and distribution of pressure and the von Mises stress markedly. The mean and peak cartilage stresses generally increased with an increase in cartilage stiffness. Areas of peak stress correlated qualitatively with sites of common injury, suggesting that further modelling work may elucidate the types of loading that precede joint injury and may assist in the development of techniques for injury mitigation.  相似文献   

3.
The mechanical properties and elastic behaviour of periodontal tissue are a decisive factor in understanding initial tooth mobility and bone remodelling processes in orthodontics. An experimental set-up was designed to precisely determine a tooth's elastic response to different loading conditions. Segments of pig's maxilla bearing separated molars were used, and their mechanical response to loading was recorded. Subsequently, finite element analysis (FEA) was performed on the basis of the experimental data. The combination of experimental and numerical methods was used to determine the material properties of the periodontal ligament (PDL). The geometries of the preparations were reconstructed and FE meshes generated semi-automatically with the aid of the special computer program, CAGOG (Computer Aided Generator for Orthodontic Geometries) to optimally match the experimental geometry. Nonlinear material parameters were determined for the PDL and verified by comparing experimental and numerical results obtained in other specimens with an error of about 10%. This good correlation indicates that the selected method of mesh generation is appropriate for creating realistic FE models that can be compared with experimental results.  相似文献   

4.
Hip loading affects the development of hip osteoarthritis, bone remodelling and osseointegration of implants. In this study, we analyzed the effect of subject-specific modelling of hip geometry and hip joint centre (HJC) location on the quantification of hip joint moments, muscle moments and hip contact forces during gait, using musculoskeletal modelling, inverse dynamic analysis and static optimization. For 10 subjects, hip joint moments, muscle moments and hip loading in terms of magnitude and orientation were quantified using three different model types, each including a different amount of subject-specific detail: (1) a generic scaled musculoskeletal model, (2) a generic scaled musculoskeletal model with subject-specific hip geometry (femoral anteversion, neck-length and neck-shaft angle) and (3) a generic scaled musculoskeletal model with subject-specific hip geometry including HJC location. Subject-specific geometry and HJC location were derived from CT. Significant differences were found between the three model types in HJC location, hip flexion–extension moment and inclination angle of the total contact force in the frontal plane. No model agreement was found between the three model types for the calculation of contact forces in terms of magnitude and orientations, and muscle moments. Therefore, we suggest that personalized models with individualized hip joint geometry and HJC location should be used for the quantification of hip loading. For biomechanical analyses aiming to understand modified hip joint loading, and planning hip surgery in patients with osteoarthritis, the amount of subject-specific detail, related to bone geometry and joint centre location in the musculoskeletal models used, needs to be considered.  相似文献   

5.
A computational model of the tibiofemoral joint utilizing the discrete element analysis method has been developed and validated with human cadaveric knees. The computational method can predict load distributions to within a root mean square error (RMSE) of 3.6%. The model incorporates subject-specific joint geometry and the health of the subjects’ articular cartilage to determine the cartilage stiffness. It also includes the collateral and cruciate ligaments and utilizes stiffness values derived from literature for these elements. Comparisons of the total load, peak load, and peak load location for axial, varus, and valgus loading conditions confirmed that there was less than 4% RMSE between the analytical and experimental results. The model presented in this paper can generate results with minimal computational time and it can be used as a non-invasive method for characterizing and monitoring subject-specific knee loading patterns.  相似文献   

6.
This study was conducted as part of research line addressing the mechanical response of periodontal ligament (PDL) to tensile–compressive sinusoidal loading. The aim of the present project was to determine the effect of three potential sources of variability: (1) specimen geometry, (2) tissue preconditioning and (3) tissue structural degradation over time. For the three conditions, selected mechanical parameters were evaluated and compared.(1) Standard flat specimens (obtained by sequentially slicing portions of bone, PDL and dentin using a precision band saw) and new cylindrical specimens (extracted with a diamond-coated trephine drill) were obtained from bovine mandibular first molars and subjected to a sinusoidal load profile. (2) Specimens were loaded with up to 2000 cycles. (3) Specimens were immersed in saline and tested after 0, 30 and 60 min.From the data generated, the following was concluded: (1) specimen geometry and preparation technique do not influence the mechanical response of the PDL; (2) the mechanical response stabilizes after approximately 1000 cycles; and (3) no major structural degradation occurs when PDL is immersed in saline for a time lapse up to 60 min.  相似文献   

7.
A better understanding of the three-dimensional mechanics of the pelvis, at the patient-specific level, may lead to improved treatment modalities. Although finite element (FE) models of the pelvis have been developed, validation by direct comparison with subject-specific strains has not been performed, and previous models used simplifying assumptions regarding geometry and material properties. The objectives of this study were to develop and validate a realistic FE model of the pelvis using subject-specific estimates of bone geometry, location-dependent cortical thickness and trabecular bone elastic modulus, and to assess the sensitivity of FE strain predictions to assumptions regarding cortical bone thickness as well as bone and cartilage material properties. A FE model of a cadaveric pelvis was created using subject-specific computed tomography image data. Acetabular loading was applied to the same pelvis using a prosthetic femoral stem in a fashion that could be easily duplicated in the computational model. Cortical bone strains were monitored with rosette strain gauges in ten locations on the left hemipelvis. FE strain predictions were compared directly with experimental results for validation. Overall, baseline FE predictions were strongly correlated with experimental results (r2=0.824), with a best-fit line that was not statistically different than the line y=x (experimental strains = FE predicted strains). Changes to cortical bone thickness and elastic modulus had the largest effect on cortical bone strains. The FE model was less sensitive to changes in all other parameters. The methods developed and validated in this study will be useful for creating and analyzing patient-specific FE models to better understand the biomechanics of the pelvis.  相似文献   

8.
Deep tissue injury (DTI) is a severe form of pressure ulcers that occur in subcutaneous tissue under intact skin by the prolonged compression of soft tissues overlying bony prominences. Pressure ulcers and DTI in particular are common in patients with impaired motosensory capacities, such as those with a spinal cord injury (SCI). Obesity is also common among subjects with SCI, yet there are contradicting indications regarding its potential influence as a risk factor for DTI in conditions where these patients sit in a wheelchair without changing posture for prolonged times. It has been argued that high body mass may lead to a greater risk for DTI due to increase in compressive forces from the bones on overlying deep soft tissues, whereas conversely, it has been argued that the extra body fat associated with obesity may reduce the risk by providing enhanced subcutaneous cushioning that redistributes high interface pressures. No biomechanical evaluation of this situation has been reported to date. In order to elucidate whether obesity can be considered a risk factor for DTI, we developed computational finite element (FE) models of the seated buttocks with 4° of obesity, quantified by body mass index (BMI) values of 25.5, 30, 35 and 40 kg/m2. We found that peak principal strains, strain energy densities (SED) and von Mises stresses in internal soft tissues (muscle, fat) overlying the ischial tuberosities (ITs) all increased with BMI. With a rise in BMI from 25.5 to 40 kg/m2, values of these parameters increased 1.5 times on average. Moreover, the FE simulations indicated that the bodyweight load transferred through the ITs has a greater effect in increasing internal tissue strains/stresses than the counteracting effect of thickening of the adipose layer which is concurrently associated with obesity. We saw that inducing some muscle atrophy (30% reduction in muscle volume, applied to the BMI=40 kg/m2 model) which is also characteristic of chronic SCI resulted in further substantial increase in all biomechanical measures reflecting geometrical distortion of muscle tissue, that is, SED, tensile stress, shear stress and von Mises stress. This result highlights that obesity and muscle atrophy, which are both typical of the chronic phase of SCI, contribute together to the state of elevated tissue loads, which consequently increases the likelihood of DTI in this population.  相似文献   

9.
Hip loading affects bone remodeling and implant fixation. In this study, we have analyzed the effect of subject-specific modeling of hip geometry on muscle activation patterns and hip contact forces during gait, using musculoskeletal modeling, inverse dynamic analysis and static optimization. We first used sensitivity analysis to analyze the effect of isolated changes in femoral neck-length (NL) and neck-shaft angle (NSA) on calculated muscle activations and hip contact force during the stance phase of gait. A deformable generic musculoskeletal model was adjusted incrementally to adopt a physiological range of NL and NSA. In a second similar analysis, we adjusted hip geometry to the measurements from digitized radiographs of 20 subjects with primary hip osteoarthrosis. Finally, we studied the effect of hip abductor weakness on muscle activation patterns and hip contact force. This analysis showed that differences in NL (41-74 mm) and NSA (113-140 degrees ) affect the muscle activation of the hip abductors during stance phase and hence hip contact force by up to three times body weight. In conclusion, the results from both the sensitivity and subject-specific analysis showed that at the moment of peak contact force, altered NSA has only a minor effect on the loading configuration of the hip. Increased NL, however, results in an increase of the three hip contact-force components and a reduced vertical loading. The results of these analyses are essential to understand modified hip joint loading, and for planning hip surgery for patients with osteoarthrosis.  相似文献   

10.
Clinical studies demonstrate substantial variation in kinematic and functional performance within the total knee replacement (TKR) patient population. Some of this variation is due to differences in implant design, surgical technique and component alignment, while some is due to subject-specific differences in joint loading and anatomy that are inherently present within the population. Combined finite element and probabilistic methods were employed to assess the relative contributions of implant design, surgical, and subject-specific factors to overall tibiofemoral (TF) and patellofemoral (PF) joint mechanics, including kinematics, contact mechanics, joint loads, and ligament and quadriceps force during simulated squat, stance-phase gait and stepdown activities. The most influential design, surgical and subject-specific factors were femoral condyle sagittal plane radii, tibial insert superior-inferior (joint line) position and coronal plane alignment, and vertical hip load, respectively. Design factors were the primary contributors to condylar contact mechanics and TF anterior-posterior kinematics; TF ligament forces were dependent on surgical factors; and joint loads and quadriceps force were dependent on subject-specific factors. Understanding which design and surgical factors are most influential to TKR mechanics during activities of daily living, and how robust implant designs and surgical techniques must be in order to adequately accommodate subject-specific variation, will aid in directing design and surgical decisions towards optimal TKR mechanics for the population as a whole.  相似文献   

11.
Abstract

Finite element modeling (FEM) can predict hip cartilage contact mechanics. This study investigated how subject-specific boundary conditions and joint geometry affect acetabular cartilage contact mechanics using a multi-scale workflow. For two healthy subjects, musculoskeletal models calculated subject-specific hip kinematics and loading, which were used as boundary conditions for FEM. Cartilage contact mechanics were predicted using either generic or subject-specific FEM and boundary conditions. A subject-specific mesh resulted in a more lateral contact. Effects of subject-specific boundary conditions varied between both subjects. Results highlight the complex interplay between loading and kinematics and their effect on cartilage contact mechanics.  相似文献   

12.
Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading.  相似文献   

13.
Pressure ulcers (PU) are localised damage to skin and underlying tissues, caused by sustained tissue deformations and ischaemia. PU typically appear in insensitive or immobile patients, e.g. those with spinal cord injury (SCI) or geriatric patients. As these patients often experience fluctuations in blood pressure, and are also exposed to high-shear loads in their weight-bearing soft tissues during wheelchair sitting or bed rest, we used an inverse finite element method to determine the effects of capillary blood pressure (CBP) and shear deformations on occurrence of mechanical collapse in capillaries. We studied collapse in straight, U-shaped and bifurcated capillaries. All model configurations were consistent in demonstrating that the level of CBP has a considerable influence on the likelihood of capillary collapse in the physiological CBP range, particularly if shear is present. Our modelling therefore suggests that low CBP is a 'suspect' risk factor for PU in SCI and geriatric patients.  相似文献   

14.
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35 years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62 ± 13 mm, 3617 ± 984 mm3 and 58 ± 11 mm2 respectively. The measured tendon strain at 70% MVIC was 5.9 ± 1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.  相似文献   

15.
Evaluating landing technique using a computer simulation model of a gymnast and landing mat could be a useful tool when attempting to assess injury risk. The aims of this study were: (1) to investigate whether a subject-specific torque-driven or a subject-specific muscle-driven model of a gymnast is better at matching experimental ground reaction forces and kinematics during gymnastics landings, (2) to calculate their respective simulation run times and (3) to determine what level of model complexity is required to assess injury risk. A subject-specific planar seven-link wobbling mass model of a gymnast and a multi-layer model of a landing mat were developed for this study. Subject-specific strength parameters were determined which defined the maximum voluntary torque/angle/angular velocity relationship about each joint. This relationship was also used to produce subject-specific 'lumped' muscle models for each joint. Kinetic and kinematic data were obtained during landings from backward and forward rotating gymnastics vaults. Both torque-driven and muscle-driven models were capable of producing simulated landings that matched the actual performances (with overall percentage differences between 10.1% and 18.2%). The torque-driven model underestimated the internal loading on joints and bones, resulting in joint reaction forces that were less than 50% of those calculated using the muscle-driven model. Simulation time increased from approximately 3 min (torque driven) to more than 10 min (muscle driven) as model complexity increased. The selection of a simulation model for assessing injury risk must consider the need for determining realistic internal forces as the priority despite increases in simulation run time.  相似文献   

16.
Traumatic cervical facet dislocation (CFD) is often associated with devastating spinal cord injury. Facet fractures commonly occur during CFD, yet quantitative measures of facet deflection, strain, stiffness and failure load have not been reported. The aim of this study was to determine the mechanical response of the subaxial cervical facets when loaded in directions thought to be associated with traumatic bilateral CFD – anterior shear and flexion. Thirty-one functional spinal units (6 × C2/3, C3/4, C4/5, and C6/7, 7 × C5/6) were dissected from fourteen human cadaver cervical spines (mean donor age 69 years, range 48–92; eight male). Loading was applied to the inferior facets of the inferior vertebra to simulate the in vivo inter-facet loading experienced during supraphysiologic anterior shear and flexion motion. Specimens were subjected to three cycles of sub-failure loading (10–100 N, 1 mm/s) in each direction, before being failed in a randomly assigned direction (10 mm/s). Facet deflection, surface strains, stiffness, and failure load were measured. Linear mixed-effects models (α = 0.05; random effect of cadaver) accounted for variations in specimen geometry and bone density. Specimen-specific parameters were significantly associated with most outcome measures. Facet stiffness and failure load were significantly greater in the simulated flexion loading direction, and deflection and surface strains were higher in anterior shear at the non-destructive analysis point (47 N applied load). The sub-failure strains and stiffness responses differed between the upper and lower subaxial cervical regions. Failure occurred through the facet tip during anterior shear loading, while failure through the pedicles was most common in flexion.  相似文献   

17.
Carpal tunnel syndrome (CTS) is a nerve entrapment disease, which has been extensively studied by the engineering and medical community. Although the direct cause is unknown, in vivo and in vitro medical research has shown that tendon excursion creates microtears in the subsynovial connective tissue (SSCT) surrounding the tendon in the carpal tunnel. One proposed mechanism for the SSCT injury is shearing, which is believed to cause fibrosis of the SSCT. Few studies have reported quantitative observations of SSCT response to mechanical loading. Our proposed model is a 2-D section that consists of an FDS tendon, interstitial SSCT and adjacent stationary tendons. We believe that developing this model will allow the most complete quantitative observations of SSCT response to mechanical loading reported thus far. Boundary conditions were applied to the FEA model to simulate single finger flexion. A velocity was applied to the FDS tendon in the model to match loading conditions of the documented cadaver wrist kinematics studies. The cadaveric and FEA displacement results were compared to investigate the magnitude of stiffness required for the SSCT section of the model. The relative motions between the model and cadavers matched more closely than the absolute displacements. Since cadaveric models do not allow identification of the SSCT layers, an FEA model will help determine the displacement and stress experienced by each SSCT layer. Thus, we believe this conceptual model is a first step in understanding how the SSCT layers are recruited during tendon excursion.  相似文献   

18.
19.
Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury (DTI). Deformation plays an important role in the aetiology of DTI. Therefore, it is essential to minimise internal muscle deformations in subjects at risk of DTI. As an example, spinal cord-injured (SCI) individuals exhibit structural changes leading to a decrease in muscle thickness and stiffness, which subsequently increase the tissue deformations. In the present study, an animal-specific finite element model, where the geometry and boundary conditions were derived from magnetic resonance images, was developed. It was used to investigate the internal deformations in the muscle, fat and skin layers of the porcine buttocks during loading. The model indicated the presence of large deformations in both the muscle and the fat layers, with maximum shear strains up to 0.65 in muscle tissue and 0.63 in fat. Furthermore, a sensitivity analysis showed that the tissue deformations depend considerably on the relative stiffness values of the different tissues. For example, a change in muscle stiffness had a large effect on the muscle deformations. A 50% decrease in stiffness caused an increase in maximum shear strain from 0.65 to 0.99, whereas a 50% increase in stiffness resulted in a decrease in maximum shear strain from 0.65 to 0.49. These results indicate the importance of restoring tissue properties after SCI, with the use of, for example, electrical stimulation, to prevent the development of DTI.  相似文献   

20.
Deep pressure ulcers are caused by sustained mechanical loading and involve skeletal muscle tissue injury. The exact underlying mechanisms are unclear, and the prevalence is high. Our hypothesis is that the aetiology is dominated by cellular deformation (Bouten et al. in Ann Biomed Eng 29:153-163, 2001; Breuls et al. in Ann Biomed Eng 31:1357-1364, 2003; Stekelenburg et al. in J App Physiol 100(6):1946-1954, 2006) and deformation-induced ischaemia. The experimental observation that mechanical compression induced a pattern of interspersed healthy and dead cells in skeletal muscle (Stekelenburg et al. in J App Physiol 100(6):1946-1954, 2006) strongly suggests to take into account the muscle microstructure in studying damage development. The present paper describes a computational model for deformation-induced hypoxic damage in skeletal muscle tissue. Dead cells stop consuming oxygen and are assumed to decrease in stiffness due to loss of structure. The questions addressed are if these two consequences of cell death influence the development of cell injury in the remaining cells. The results show that weakening of dead cells indeed affects the damage accumulation in other cells. Further, the fact that cells stop consuming oxygen after they have died, delays cell death of other cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号