首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pant D  Adholeya A 《Biodegradation》2007,18(5):647-659
Selected isolates of fungi were grown on wheat straw and corncob in the presence of different moistening agents such as water, molasses, potato dextrose broth and distillery effluent. All the fungal isolates responded differently with respect to growth and ligninolytic enzyme production. Fungal growth on different substrates was checked by calculating ergosterol content, which varied widely within a single species when grown on different substrates. The maximum laccase production was obtained for Aspergillus flavus TERI DB9 grown on wheat straw with molasses. For manganese peroxidase, highest production was in Aspergillus niger TERI DB20 grown on corncob with effluent. Among the two isolates positive for lignin peroxidase, the highest production was in Fusarium verticillioides ITCC 6140. This immobilized fungal biomass was then used for decolorization of effluent from a cane molasses based distillery. Maximum decolorization (86.33%) was achieved in Pleurotus ostreatus (Florida) Eger EM 1303 immobilized on corncob with molasses in a period of 28 days.  相似文献   

2.
The oxygen uptake rate (OUR) was studied in a solid state fermentation process of dried citrus peel with the strain Aspergillus niger QH-2 in order to obtain the growth estimation of the microorganism in the system. The relationship between OUR, the maintenance coefficient (m) and the yield for oxygen consumption YO2 allows the estimation of the biomass rate if we consider that both parameters are not constants in some periods of the process. It was estimated that in the first 24th the strain has an specific growth rate of 0.174 h?1 with values for YO2 and m in the order of 2.84 g-cell/g-oxygen and 0.006 g-oxygen/g-cell ·h respectively.  相似文献   

3.
Production of pectinesterase and polygalacturonase by Aspergillus niger was studied in submerged and solid-state fermentation systems. With pectin as a sole carbon source, pectinesterase and polygalacturonase production were four and six times higher respectively in a solid state system than in a submerged fermentation system and required a shorter time for enzyme production. The addition of glucose increased pectinesterase and polygalacturonase production in the solid state system but in submerged fermentation the production was markedly inhibited. A comparison of enzyme productivities showed that those determined for pectinesterase and polygalacturonase with pectin as a carbon source were three and five times higher by using the solid state rather than the submerged fermentation system. The productivities of the two enzymes were affected by glucose in both fermentation systems. The membranes of cells from the solid state fermentation showed increased levels of C18:1, C16:0 and C18:0 fatty acids. Differences in the regulation of enzyme synthesis by Aspergillus niger depended on the fermentation system, favoring the solid state over the submerged fermentation for pectinase production. Received 12 May 1997/ Accepted in revised form 19 September 1997  相似文献   

4.
For this study, 2,3-butanediol (BD) fermentation from pure and biomass-derived sugar were optimized in shake-flask and 5-L bioreactor levels using Klebsiella oxytoca ATCC 8724. The results showed that 70 g/L of single sugar (glucose or xylose) and 90 g/L of mixed-sugar (glucose:xylose = 2:1) were optimum concentrations for efficient 2,3-BD fermentation. At optimum sugar concentrations, 2,3-BD productivities were 1.03, 0.64 and 0.50 gL−1 h−1, and yields were 0.43, 0.36 and 0.35 g/g in glucose, xylose and mixed-sugar medium, respectively. The lack of simultaneous utilization of glucose and xylose led to the lowest productivity in the mixed-sugar medium. Detoxification of biomass hydrolyzates was necessary for efficient 2,3-BD fermentation when sugar concentrations in the medium was 90 g/L or higher, but not with sugar concentrations of 30 g/L or less. A fed-batch fermentation using glucose medium led to an increase 2,3-BD titer to 79.4 g/L and yields 0.47 g/g, while productivity decreased to 0.79 gL−1 h−1. However, the fed-batch process was inefficient using mixed-sugar and biomass hydrolyzates because of poor xylose utilization. These results indicated that appropriate biomass processing technologies must be developed to generate separate glucose and xylose streams to produce high 2,3-BD titer from biomass-derived sugar using a fed-batch process.  相似文献   

5.
Prawn waste, a chitinous solid waste of the shellfish processing industry, was used as a substrate for chitinase production by the marine fungus Beauveria bassiana BTMF S10, in a solid state fermentation (SSF) culture. Theprocess parameters influencing SSF were optimized. A maximum chitinase yield of 248.0 units/g initial dry substrate (U/gIDS) was obtained in a medium containing a 5:1 ratio (w/v) of prawn waste/sea water, 1% (w/w) NaCl,2.5% (w/w) KH2PO4, 425–600m substrate particle size at 27°C, initial pH 9.5, and after 5 days of incubation. The presence of yeast extract reduced chitinase yield. The results indicate scope for the utilization of shellfish processing (prawn) waste for the industrial production of chitinase by using solid state fermentation.  相似文献   

6.
对桦褐孔菌深层发酵培养基进行了筛选,以菌丝体及甾类化合物产量为目标对发酵条件进行了优化,确定最佳发酵条件为:30g/L葡萄糖,2.5g/L黄豆粉,2.5g/L蛋白胨,3g/L KH2PO4,0.8g/L MgSO4,0.8g/L CaSO4,初始pH4.0,接种量15%,装液量100mL/500mL,转速150r/min,28℃恒温培养。此条件下培养11d,菌丝体干重达12.52g/L,甾体类化合物的产量达112.44mg/L。  相似文献   

7.
Marine microbes are potential source for novel metabolites. They are efficient in producing these metabolites utilizing agrowastes. Protease is one of the enzymes which find wide industrial applications. In the present study, protease producing bacteria was isolated from marine sediments and the organism was identified as Bacillus halodurans. The organism was subjected to protease production under solid state fermentation (SSF) using different agrowastes as substrates. Among the substrates used, wheat bran yielded maximum quantity of protease. The fermentation process was carried out under different cultural conditions to optimize the parameters influencing the enzyme production. The results of the stain removal studies by the enzyme revealed the increased efficiency of the microbial enzyme than the commercial detergent.  相似文献   

8.
Mycophenolic acid (MPA) can be produced in solid state fermentation. An isolate of Penicillium brevi-compactum ATCC 16024 grown on moist wheat bran produced a titre of 425 mg per kg of wheat bran. Central composite rotatable design and response surface methodology were employed to derive a statistical model for media optimization towards production of mycophenolic acid. Five levels with a five factorial design were adopted. The correlation coefficient was 0.82, ensuring a satisfactory adjustment of the model to the experimental values. This statistical design was very effective in improving the titre of mycophenolic acid up to 3286 mg per kg of wheat bran. Received 24 July 1998/ Accepted in revised form 4 December 1998  相似文献   

9.
A solid state fermentation method was used to utilise pineapple, mixed fruit and maosmi waste as substrates for citric acid production using Aspergillus niger DS 1. Experiments were carried out in the presence and absence of methanol at different moisture levels. In the absence of methanol the maximum citric acid was obtained at 60% moisture level whereas in the presence of methanol the maximum citric acid was obtained at 70% moisture level. The stimulating effect of methanol was less at lower moisture level. The inhibitory effect of metal ions was also not observed and maximum citric acid yield of 51.4, 46.5 and 50% (based on sugar consumed) was obtained from pineapple, mixed fruit and maosmi residues, respectively.  相似文献   

10.
Aspergillus niger NCIM 563 produces dissimilar phytase isozymes under solid state and submerged fermentation conditions. Biochemical characterization and applications of phytase Phy III and Phy IV in SSF and their comparison with submerged fermentation Phy I and Phy III were studied. SSF phytases have a higher metabolic potential as compared to SmF. Phy I is tetramer and Phy II, III and IV are monomers. Phy I and IV have pH optima of 2.5 and Phy II and III have pH optima of 5.0 and 5.6, respectively. Phy I, III and IV exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. SSF phytase is less thermostable as compared to SmF phytase. Phy I and II show homology with other known phytases while Phy III and IV show no homology with SmF phytases and any other known phytases from the literature suggesting their unique nature. This is the first report about differences among phytase produced under SSF and SmF by A. niger and this study provides basis for explanation of the stability and catalytic differences observed for these enzymes. Exclusive biochemical characteristics and multilevel application of SSF native phytases determine their efficacy and is exceptional.  相似文献   

11.
The kinetics of β-fructofuranosidase (Ffase) production by Aspergillus niger in submerged (SmF) and solid-state fermentation (SSF) systems was investigated. The maximum productivity of Ffase (81.8 U/l per h) was obtained in SSF for 72 h while it was 18.3 U/l per h in SmF for 120 h. The productivity of extra cellular Ffase produced in SSF was 5-fold higher than in SmF. Optimization of fermentation medium for Ffase production was carried out using De Meo's fractional factorial design with seven components such as (NH4)2SO4, KH2PO4, FeSO4, MgSO4 · 7H2O, sucrose, urea and yeast extract. The media designed for SmF after two steps of optimization supported the growth of A. niger and higher productivity of Ffase (58.3 U/l per h) than with the medium before optimization. The optimized medium of SmF when used in SSF, did not improve the Ffase productivity and therefore medium for SSF was optimized independent of SmF. After two optimization steps, the media was defined for SSF which supported the growth and high level of Ffase productivity (149.1 U/l per h) in SSF compared to the medium before optimization (81.8 U/l per h) and optimized medium for SmF (58.3 U/l per h). Our results suggested that the optimized media for SmF and SSF for the production of Ffase have to be different.  相似文献   

12.
里氏木霉LW1固态发酵纤维素酶条件的研究   总被引:3,自引:0,他引:3  
采用里氏木霉LW 1(Trichoderma.Reesei)固体发酵生产纤维素酶,研究了秸杆粉和麦麸用量、料水比、起始pH值、发酵温度和发酵时间对该菌株产纤维素酶活力的影响。试验结果表明,里氏木霉LW 1的适宜发酵条件为:在秸秆∶麦麸=1∶1,料水比为1∶2的前提条件下,培养温度28℃,发酵周期为72h,起始pH5.5时产酶活力最高。浸出液中FPA酶活为119.417u/g干物质,CMC酶活为452.433u/g干物质。  相似文献   

13.
Whey permeate (WP) was used efficiently for production of mosquitocidal toxin by Bacillus sphaericus 2362 (B. sphaericus 2362) and the Egyptian isolate, B. sphaericus 14N1 (B. sphaericus 14N1) under both submerged and solid state fermentation conditions. Under submerged fermentation, high mosquitocidal activity was produced by B. sphaericus 2362 and B. sphaericus 14N1 at 50-100% and 25-70% WP, respectively. Initial pH of WP was a critical factor for toxin production by both tested organisms. The highest toxicity was obtained at initial pH 7. Egyptian isolate, B. sphaericus 14N1 was tested for growth and toxin production under solid state fermentation conditions (SSF) by using WP as moistening agent instead of distilled water. The optimum conditions for production of B. sphaericus 14N1 on wheat bran-WP medium were 10 g wheat bran/250 ml flask moistened with 10-70% WP at 50% moisture content, inoculum size ranged between 17.2 × 107 and 34.4 × 107 and 6 days incubation under static conditions at 30 °C. Preliminary pilot-scale production of B. sphaericus 14N1 under SSF conditions in trays proved that wheat bran-WP medium was efficient and economic for industrial production of mosquitocidal toxin by B. sphaericus.  相似文献   

14.
响应曲面法优化灵芝廉价型深层发酵培养基的研究   总被引:2,自引:0,他引:2  
为了获得生产用廉价型灵芝发酵培养基,采用中心组合旋转设计法和响应曲面法对低成本培养基组分进行了优化。优化的四个组分为玉米粉(x1)、麸皮粉(x2)、豆饼粉(x3)和蔗糖(x4)。结果表明,灵芝菌体发酵和多糖发酵的培养基预测模型分别为:Y1=15.1–0.31x1–0.34x2+0.36x3–0.44x4–1.26x12–1.98x22–0.85x32–1.15x42–0.59x2x3和Y2=2.0–0.08x1–0.08x2+0.04x3–0.09x4–1.13x12–0.33x22–0.08x32–0.16x42–0.16x2x3–0.10x1x4。从中获得菌体发酵的最优配方为:玉米粉19.7g/L,麸皮粉11.3g/L,豆饼粉6.3g/L,蔗糖19.5g/L;多糖发酵的最优配方为:玉米粉19.6g/L,麸皮粉11.0g/L,豆饼粉6.7g/L,蔗糖19.1g/L。150L发酵罐中试放大结果表明,灵芝菌体的产量为16.92g/L,多糖产量为1.86g/L。所得培养基为灵芝产品的高效低成本生产提供了基础。  相似文献   

15.
The bioconversion of sugar beet pulp (SBP) into microbial protein by the process of solid state fermentation (SSF) was studied. Two SSF reactors (each having overall dimensions of 17.6 × 3.6 × 2.0 m) with appropriate control systems were constructed. This pilot plant has a maximum working capacity of 50 metric tons (20% dry metter). The production strain used was Aspergillus tamarii 827, which was isolated by our laboratory. The protein content of the products amounted to 22.4% in 48 h.  相似文献   

16.
Fractionation of aquatic green biomass of three water weeds for multiple use through yield of protein concentrate, fibrous residue and whey (deproteinised juice) has been studied. The potential of protein concentrate for use as food/feed supplement, that of fibrous residue as ensilaged fodder/substrate for mushroom growth/production of bioenergy and of whey as substrate for microbial fermentation has been studied and is discussed.  相似文献   

17.
The optimization studies for production of chitinase were carried out by response surface methodology (RSM) based on statistics experimental design using three substrates, which were wheat, rice and red gram bran. 24 full factorial central composite design was applied to evaluate optimal combinations of variables. These variables were chitin concentration, initial moisture content, inoculum level, and incubation time. The results of second order polynomial showed that all four variables had significant effect on chitinase production. Maximum chitinase activity was recorded for wheat bran (2443.23 U g−1) than rice (1216.65 U g−1) and red gram bran (961.32 U g−1). An overall 3-fold increase in chitinase activity was achieved using optimized strategies of RSM. Growth of the fungus on all bran particles have been visualized by scanning electron microscopy. These results indicated the potential of Penicillium ochrochloron for economical production of chitinase using agricultural residues. TLC and HPLC analysis of colloidal chitin hydrolysate with partially purified chitinases revealed that the major reaction product was monomeric GlcNAc indicating the potential of these enzymes for efficient production of GlcNAc.  相似文献   

18.
Non-aseptic production of biosurfactant from molasses by a mixed culture was investigated in stirred batch reactors. Biosurfactant production was quantified by surface tension reduction, critical micelle dilution (CMD), and emulsification capacity (EC). Biosurfactant production was directly correlated with biomass production, and was improved by pH control and addition of yeast extract. Centrifugation of the whole broth increased emulsifying capacity and reduced surface tension. Acidification of the whole broth increased the emulsification capacity but reduced the apparent biosurfactant concentration (CMD), without affecting the surface tension. The emulsification capacity of the cell-free broth was equivalent to that of a 100 mg/L solution of sodium dodecyl sulfate. The emulsification capacity of the whole broth and cell-free broth were reduced by about 50% at and above NaCl concentrations of 100mM. Preliminary characterization suggests that the biosurfactant activity is primarily associated with one or more protease-sensitive species, released from cells in larger quantities after more vigorous centrifugation.  相似文献   

19.
王晓玲  周广乙  刘高强 《菌物学报》2016,35(10):1250-1257
多糖和D-甘露醇是蛹虫草的重要药理活性成分。本文开展了蛹虫草在分批发酵过程中同时生产多糖和D-甘露醇的发酵动力学研究。利用Sigmoid函数构建了蛹虫草菌丝生长、糖基质消耗、多糖和D-甘露醇的非结构动力学模型,并根据Boltzmann方程拟合求解出各模型参数。结果显示,各模型的实测值和预测值拟合度较好。蛹虫草比生长速率在第1.0天达到最大值(μmax)1.244d-1;底物葡萄糖的比消耗速率在第0.6天达到最大值(qS, max)2.163d-1;多糖比合成速率在第2.0天达到最大值(qP, max)51.852mg/(g·d);D-甘露醇比合成速率在第0.99天左右达到最大值(qD, max)37.963mg/(g·d)。蛹虫草多糖的形成与菌丝细胞的生长呈现部分生长关联型,而D-甘露醇的形成与细胞生长呈现生长关联型关系。研究结果为利用分批发酵规模化同时发酵生产蛹虫草多糖和D-甘露醇提供了理论依据。  相似文献   

20.
《Process Biochemistry》2014,49(10):1571-1579
Strictly aerobic acetic acid bacteria (AAB) have a long history of use in fermentation processes, and the conversion of ethanol to acetic acid for the production of vinegar is the most well-known application.At the industrial scale, vinegar is mainly produced by submerged fermentation, which refers to an aerobic process in which the ethanol in beverages such as spirits, wine or cider is oxidized to acetic acid by AAB. Submerged fermentation requires robust AAB strains that are able to oxidize ethanol under selective conditions to produce high-titer acetic acid. Currently submerged fermentation is conducted by unselected AAB cultures, which are derived from previous acetification stocks and maintained by repeated cultivation cycles.In this work, submerged fermentation for vinegar production is discussed with regard to advances in process optimization and parameters (oxygen availability, acetic acid content and temperature) that influence AAB activity. Furthermore, the potential impact arising from the use of selected AAB is described.Overcoming the acetification constraints is a main goal in order to facilitate innovation in submerged fermentation and to create new industry-challenging perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号