首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Notch signalling via RBP-J promotes myeloid differentiation   总被引:10,自引:0,他引:10       下载免费PDF全文
Schroeder T  Just U 《The EMBO journal》2000,19(11):2558-2568
  相似文献   

4.
5.
Arbiter of differentiation and death: Notch signaling meets apoptosis.   总被引:18,自引:0,他引:18  
Notch-ligand interactions are a highly conserved mechanism that regulates cell fate decisions. Over the past few years, numerous observations have shown that this mechanism operates to regulate cell differentiation in an enormous variety of developmental and cell maturation processes. Recent studies indicate that in addition to cell differentiation, Notch signaling has direct effects on proliferation and programmed cell death. The picture emerging from these findings suggests that, depending on cellular and developmental context, Notch signaling may function as a general "arbiter" of cell fate, regulating differentiation potential, rate of proliferation, and apoptotic cell death. In this review, we briefly summarize the current knowledge of the structure and function of Notch receptors and discuss the recent evidence that Notch signaling regulates apoptotic cell death. The possible mechanisms of this effect and its potential implications for developmental biology, immunobiology, neuropathology, and tumor biology are discussed.  相似文献   

6.
The Notch pathway is involved in multiple aspects of vascular development, including arterial-venous differentiation. Here, we show that Notch stimulation instructively induces arterial characteristics in endothelial cells (EC). Forced expression of Notch intracellular domain (NICD, activated form of Notch) induced mRNA expression for a subset of arterial-specific markers such as ephrinB2, connexin40, and HERP1 only in EC but not other cell lines. In co-culture experiments using EC and either Dll4- or Jagged1-expressing cells, we found that Dll4 stimulation but not Jagged1 markedly induced ephrinB2 expression. An inducible expression of HERP1 and HERP2 by NICD has no measurable effects on expression of ephrinB2 and venous marker EphB4 although either HERP1 or HERP2 overexpression exerts potent inhibitory effects on EphB4 expression without ephrinB2 induction. We also found no functional interaction between Notch and TGF-beta-ALK1 signalings in an induction of ephrinB2 expression. These results suggest that Dll4-stimulated Notch signaling induces a part of arterial characteristics only in EC via HERP-independent mechanism. Our data provide new insight into the molecular mechanism of ligand-selective Notch activation during differentiation of arterial EC.  相似文献   

7.
8.
Originally discovered nearly a century ago, the Notch signaling pathway is critical for virtually all developmental programs and modulates an astounding variety of pathogenic processes. The DSL (Delta, Serrate, LAG-2 family) proteins have long been considered canonical activators of the core Notch pathway. More recently, a wide and expanding network of non-canonical extracellular factors has also been shown to modulate Notch signaling, conferring newly appreciated complexity to this evolutionarily conserved signal transduction system. Here, I review current concepts in Notch signaling, with a focus on work from the last decade elucidating novel extracellular proteins that up- or down-regulate signal potency.  相似文献   

9.
10.
11.
12.
13.
14.
Autophagy plays important roles in self-renewal and differentiation of stem cells. Hepatic progenitor cells (HPCs) are thought to have the ability of self-renewal as well as possess a bipotential capacity, which allows them to differentiate into both hepatocytes and bile ductular cells. However, how autophagy contributes to self-renewal and differentiation of hepatic progenitor cells is not well understood. In this study, we use a well-established rat hepatic progenitor cell lines called WB-F344, which is treated with 3.75 mM sodium butyrate (SB) to promote the differentiation of WB-F344 along the biliary phenotype. We found that autophagy was decreased in the early stage of biliary differentiation, and maintained a low level at the late stage. Activation of autophagy by rapamycin or starvation suppressed the biliary differentiation of WB-F344. Further study reported that autophagy inhibited Notch1 signaling pathway, which contributed to biliary differentiation and morphogenesis. In conclusions, autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway.  相似文献   

15.
In T-cell acute lymphoblastic leukemia (T-ALL) NOTCH 1 receptors are frequently mutated. This leads to aberrantly high Notch signaling, but how this translates into deregulated cell cycle control and the transformed cell type is poorly understood. In this report, we analyze downstream responses resulting from the high level of NOTCH 1 signaling in T-ALL. Notch activity, measured immediately downstream of the NOTCH 1 receptor, is high, but expression of the canonical downstream Notch response genes HES 1 and HEY 2 is low both in primary cells from T-ALL patients and in T-ALL cell lines. This suggests that other immediate Notch downstream genes are activated, and we found that Notch signaling controls the levels of expression of the E3 ubiquitin ligase SKP2 and its target protein p27Kip1. We show that in T-ALL cell lines, recruitment of NOTCH 1 intracellular domain (ICD) to the SKP2 promoter was accompanied by high SKP2 and low p27Kip1 protein levels. In contrast, pharmacologically blocking Notch signaling reversed this situation and led to loss of NOTCH 1 ICD occupancy of the SKP2 promoter, decreased SKP2 and increased p27Kip1 expression. T-ALL cells show a rapid G1-S cell cycle transition, while blocked Notch signaling resulted in G0/G1 cell cycle arrest, also observed by transfection of p27Kip1 or, to a smaller extent, a dominant negative SKP2 allele. Collectively, our data suggest that the aberrantly high Notch signaling in T-ALL maintains SKP2 at a high level and reduces p27Kip1, leading to more rapid cell cycle progression.  相似文献   

16.
The Notch signal transduction pathway regulates the decision to proliferate versus differentiate. Although there are a myriad of mouse models for the Notch pathway, surprisingly little is known about how these genes regulate early eye development, particularly in the anterior lens. We employed both gain-of-function and loss-of-function approaches to determine the role of Notch signaling in lens development. Here we analyzed mice containing conditional deletion of the Notch effector Rbpj or overexpression of the activated Notch1 intracellular domain during lens formation. We demonstrate distinct functions for Notch signaling in progenitor cell growth, fiber cell differentiation and maintenance of the transition zone. In particular, Notch signaling controls the timing of primary fiber cell differentiation and is essential for secondary fiber cell differentiation. Either gain or loss of Notch signaling leads to formation of a dysgenic lens, which in loss-of-function mice undergoes a profound postnatal degeneration. Our data suggest both Cyclin D1 and Cyclin D2, and the p27Kip1 cyclin-dependent kinase inhibitor act downstream of Notch signaling, and define multiple critical functions for this pathway during lens development.  相似文献   

17.
18.
Notch signaling is implicated in many developmental processes. In our current study, we have employed a transgenic strategy to investigate the role of Notch signaling during cardiac development in the mouse. Cre recombinase-mediated Notch1 (NICD1) activation in the mesodermal cell lineage leads to abnormal heart morphogenesis, which is characterized by deformities of the ventricles and atrioventricular (AV) canal. The major defects observed include impaired ventricular myocardial differentiation, the ectopic appearance of cell masses in the AV cushion, the right-shifted interventricular septum (IVS) and impaired myocardium of the AV canal. However, the fates of the endocardium and myocardium were not disrupted in NICD1-activated hearts. One of the Notch target genes, Hesr1, was found to be strongly induced in both the ventricle and the AV canal of NICD1-activated hearts. However, a knockout of the Hesr1 gene from NICD-activated hearts rescues only the abnormality of the AV myocardium. We searched for additional possible targets of NICD1 activation by GeneChip analysis and found that Wnt2, Bmp6, jagged 1 and Tnni2 are strongly upregulated in NICD1-activated hearts, and that the activation of these genes was also observed in the absence of Hesr1. Our present study thus indicates that the Notch1 signaling pathway plays a suppressive role both in AV myocardial differentiation and the maturation of the ventricular myocardium.  相似文献   

19.
Leem YE  Choi HK  Jung SY  Kim BJ  Lee KY  Yoon K  Qin J  Kang JS  Kim ST 《Cellular signalling》2011,23(11):1876-1884
Esco2 is an acetyltransferase that is required for the establishment of sister chromatid cohesion. Roberts-SC phocomelia (RBS) syndrome caused by the mutations of Esco2 gene, is an autosomal recessive development disorder characterized by growth retardation, limb reduction and craniofacial abnormalities including cleft lip and palate. Here, we show that Esco2 protein co-immunoprecipitates with Notch but not with CBF1. Esco2 represses the transactivational activity of Notch protein in an acetyltransferase-independent manner. Chromatin immunoprecipitation experiments suggest that Esco2 might regulate the activity of NICD-CBF1 via attenuating NICD binding to CBF1 on the promoter of Hes1, the downstream target gene of Notch. Furthermore, we demonstrate that the overexpression of Esco2 promotes the neuronal differentiation of P19 embryonic carcinoma cells and C17.2 neural progenitor cells and the knockdown of Esco2 by siRNA blocks the differentiation. The inhibitory effects of Notch protein on neuronal differentiation of P19 cells was suppressed by Esco2 overexpression. Taken together, our study suggests that Esco2 may play an important role in neurogenesis by attenuating Notch signaling to promote neuronal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号