首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acid phosphatase and beta-glucosidase were shown to be present in five species of Ochromonas grown in organic media (O. danica, O. malhanesis, O. munuta, O. sociabilis and Ochromonas sp. 933/4). Acid phosphatase was found to have a pH optimum at 4.0 in O. danica, and at 5.1 in the four other species. No alkaline phosphatase was found in any of the above mentioned species. Beta-glucosidase in the species studied has a pH optimum at 4.6. Low alpha-glucosidase activity was found only in O. danica. Acid phosphatase in all the five species shows an increase in activity during the logarithmic phase of growth and a decrease during the early stationary phase. Beta-glucosidase shows a similar behavior only in O. danica.  相似文献   

2.
SYNOPSIS. Changes accompanying aging of stationary cultures of Ochromonas danica were examined with the electron microscope. The cultures included light- and dark-grown populations ranging in age from 3 days to 5 weeks. Cells from the youngest cultures contained minimal amounts of lipid and a distinct leucosin vacuole. After 1 week, the number of lipid globules in the cytoplasm increased. The amount of lipid increased progressively in cells from older cultures until the leucosin vacuole was obliterated by the coalescing spheres. Cells from cultures older than 3 weeks showed a general breakdown of cytoplasmic integrity. An area of pinocytotic activity was also present; a relationship between this anterior region and blebs arising from the cell membrane is suggested.  相似文献   

3.
4.
The expression and activity of type 1 NAD(P)H dehydrogenase (NDH-1) were investigated in Synechocystis PCC 6803 cells during different growth phases (i.e. lag, logarithmic, stationary and decline phases). The relative amount of NDH-1, estimated by Western blot analysis using antibodies against NdhH, NdhI and NdhK, increased more than two-fold during growth from the lag to the logarithmic phase and then decreased after the logarithmic phase to reach lowest levels after 15 days (decline phase). The activity of light-dependent NADPH oxidation and cyclic electron flow around photosystem I (PSI) changed nearly in parallel with the amount of NdhH, NdhI and NdhK in cells across the growth phases. In contrast, the activity of photosynthetic O2 evolution and respiratory O2 uptake was not significantly different across phases of growth; the fluctuation of the activity at different phases was within 40%. These results suggested that the activity of light-dependent NADPH oxidation and PSI-cyclic electron flow are restricted by the amount of NDH-1 and that other factor(s) are limiting the rates of photosynthesis and respiration.  相似文献   

5.
Changes in lipid composition and fatty acid distribution in lipid fractions from total extracts of Trypanosoma cruzi were studied in culture from Day 2 to Day 14. This comprises the phases of exponential, stationary, and declining growth. Total phospholipid content decreased steadily during the three culture phases due to the marked reduction of phosphatidylcholine. Phosphatidylethanolamine increased during the exponential and declining phases. Thus, the final phosphatidylethanolamine/phosphatidylcholine ratio was higher than that determined on the second day. Sterols and acylglycerides increased as cultures aged. Fatty acid composition of different fractions varied during aging: phosphatidylcholine and phosphatidylethanolamine presented an increase of saturated and reduction of polyunsaturated (linoleic) acids, while for lysophosphatidylcholine and acylglycerides, the opposite change occurred. The modifications described may produce reduction of membrane fluidity and indicate that lipids participate actively in the adaptation of T. cruzi to the environmental changes produced by aging in culture.  相似文献   

6.
The fraction of bacteria displaying phosphatase activity within natural photosynthetic biofilms was examined in relation to phosphorus limitation and algal photosynthesis. An artificial substrate that forms a fluorescent precipitate was used in conjunction with the nucleic acid stain DAPI to enumerate extracellular phosphatase expression by biofilm bacteria exposed to different photosynthetic activities and phosphorus supplies. The proportion of bacteria displaying phosphatase activity changed in response to the presence or absence of algal photosynthesis. In general, phosphate-deprived biofilms had positive linear trends in bacterial phosphatase activity (p <0.001), with greater proportions of bacteria displaying phosphatase under photosynthetic inhibition compared to active photosynthesis. Under sufficient phosphate supplies, biofilms had negative linear trends (p <0.05) or were lower in the proportion of bacteria displaying phosphatase activity in the presence of algal photosynthesis, whereas bacterial phosphatase activity was generally maintained when photosynthesis was inhibited. it is suggested that the amount of extracellular organic carbon released within the biofilm matrix during photosynthesis indirectly affected bacterial phosphatase synthesis.  相似文献   

7.
The regulatory mechanism of triacylglycerol synthesis in Saccharomyces cerevisiae was studied. The triacylglycerol content increased markedly during the entry of cells into the stationary growth phase, whereas the content of phospholipids remained unchanged. Pulse-labeling experiments to measure [14C]acetate incorporation into triacylglycerol revealed that the synthesis of triacylglycerol increased in the stationary growth phase. An increase in fatty acid synthesis was observed only in the later stage of the stationary growth phase and thus does not seem to be the principal causative factor for the triacylglycerol accumulation. Among various triacylglycerol-synthetic enzymes tested, the increase in the phosphatidate phosphatase (EC 3.1.3.4) activity was most closely correlated with the accumulation of triacylglycerol in the stationary phase. Our results show that phosphatidate phosphatase plays an important role in the regulation of triacylglycerol synthesis in S. cerevisiae.  相似文献   

8.
Comparison of 5 d old stationary cultures of Saccharomyces cerevisiae and of cultures aged for 3 months revealed increased generation of reactive oxygen species assessed by 2', 7'-dichlorofluorescin oxidation, decreased activity of superoxide dismutase, decreased content of glutathione and increased protein carbonyl content during prolonged incubation of stationary yeast cultures. These results point to the occurrence of oxidative stress during aging of stationary cultures of the yeast. The magnitude of this stress was augmented in antioxidant-deficient strains, devoid of superoxide dismutases and catalases, and of decreased glutathione content.  相似文献   

9.
为探究藻类之间的可能存在的信息传递, 研究了棕鞭藻(Ochromonas sp.)及其培养滤液对铜绿微囊藻的生长及生理特性的影响。结果发现, 3种不同接种比例(1﹕4、1﹕1和4﹕1)的棕鞭藻与微囊藻共培养下, 微囊藻细胞密度到第4天均下降到最低值, 而棕囊藻细胞密度则显著增加。同时, 棕鞭藻培养滤液能够抑制微囊藻的生长、导致丙二醛(MDA)含量和过氧化氢酶(CAT)活性。此外, 棕鞭藻培养滤液也能促进微囊藻胞外多糖(EPS)含量显著增加。这表明棕鞭藻不仅能吞噬微囊藻, 而且可能释放某些化感物质抑制微囊藻生长及生理参数。这暗示了棕鞭藻可作为潜在的藻类水华控制生物, 抑制早期藻类大量增殖。  相似文献   

10.
We examined the alterations in 20S proteasome homeostasis, protein oxidation, and cell viability that occur during the stationary phase or chronological model of yeast aging. Data in this report demonstrate that proteasome subunit expression is increased, proteasome composition is altered, and levels of individual proteasome proteolytic activities are elevated during stationary phase-induced aging in Saccharomyces cerevisiae. Despite such alterations, a progressive loss of proteasome-mediated protein degradation and a significant increase in protein oxidation were observed in cells maintained under stationary phase conditions. Deletion of UMP1, a gene necessary for 20S proteasome biogenesis, had no effect on cellular viability under normal growth conditions, but impaired the ability of cells to survive under stationary phase conditions. During stationary phase, the levels of oxidized protein increased more rapidly and to higher levels in the mutant lacking UMP1 than in the wild-type cells. Taken together, these data implicate a role for proteasome synthesis and altered 20S proteasome composition in maintaining viability during stationary phase, and demonstrate that even with these modifications a gradual loss of proteasome-mediated protein degradation occurs during stationary phase-induced aging. These data also suggest a role for impaired proteasome-mediated protein degradation in increased protein oxidation and cell death observed during the aging of eukaryotic cells.  相似文献   

11.
Changes in photosynthetic activity, redox state of photosystem I (PSI) and photosystem II (PSII), as well as starch and sucrose content were studied on the source leaves of 18- to 20-day-old radish (Raphanus sativus L.) plants that were dark-adapted for 12 h and then exposed to continuous white light (170 mol quanta/(m2 s)). The kinetic pattern of photosynthetic activity comprised three phases. Within the first 6 h of light adaptation (first phase), the maximum photosynthetic rate and the quantum yield of photosynthesis increased 1.6 times in the illuminated leaves compared to the leaves of plants placed in darkness. Further illumination led to the decrease of both photosynthetic indices by about 20% (12 h after the onset of light exposure, second phase) and finally increased them to the level observed after 6-h light exposure (72 h, third phase). The stationary photooxidation level of PSI primary donor was relatively low within the first 6 h of light adaptation, and then it steeply increased. The linear relationship between the amounts of photoreduced PSII primary acceptor and photooxidized PSI primary donor did not change during prolonged light adaptation, showing a highly coordinated functioning of both photosystems. The amount of sucrose in leaves attained its peak after 12 h of light adaptation and did not change further on. The starch content increased to its peak within 24 h of illumination and decreased gradually upon longer exposures. It is concluded that, despite active export of assimilates to the developing storage organ, the source leaves exhibit a nonmonotonic temporal course of endogenously regulated photosynthetic activity, which was related to changes in the effectiveness and, possibly, the number of the components of photosynthetic apparatus.  相似文献   

12.
Acid phosphatase (EC 3.1.3.2.) activity in all fractions and growth phases of strawberry cell culture was 3-fold higher in the excessively agitated cells compared to a control. The stressed cells lost 9% of viability in the lag phase. Concomitantly the enzyme activity ratio of the lysosome fraction to the crude organelle mixture decreased (-33%) whereas the activity ratio of the cytosol fraction to the crude organelle mixture increased (+30%). This change in the enzyme activity of the ratio of the fractions was not observed in the exponential and stationary phase where the loss of viability was only 4 to 5%.  相似文献   

13.
A study has been made of the decay of acid phosphatase (ACP1) in the human red cell using red cell fractions of different mean ages prepared by density gradient centrifugation. Red cells from acid phosphatase type A and type B individuals were used in the study. Acid phosphatase activity of the red cell fractions was determined by two different assay methods. The results obtained were comparable and have been combined. Acid phosphatase type A and type B showed a biphasic decay pattern with a rapid early loss of activity, followed by a more gradual rate of decline. Type A appeared to decay more rapidly than type B in both decay phases. It is proposed that differences in stability between type A and type B in vivo may explain the observed differences in activity between the enzyme types. There was no evidence for the generation of secondary isozymes by acid phosphatase type A or type B during red cell aging.  相似文献   

14.
L. Donovani promastigotes were grown to late-log and 3-day stationary phase to determine the level of protein tyrosine phosphatase activity in crude extracts and in fractions following gel filtration column chromatography. Over 90% of the activity was soluble in a low salt extraction buffer in both phases of growth. Several peaks of activity were resolved following gel filtration of the crude extracts indicating that multiple tyrosine phosphatases are present in these cells. Tyrosine phosphatase activity was lower in 3-day stationary than in late log-phase cells and a reduction in the major peak of activity, eluting in a gel fraction corresponding to an M r of approximately 168kDa, was observed.In vivo tyrosine phosphorylation was revealed by Western blot analysis. The degree of phosphorylation of at least two proteins differed in cells obtained from late log phase cultures as compared with 3-day stationary phase cultures. These observations indicate that changes in the balance between tyrosine phosphorylation and dephosphorylation occur with increasing culture age.Abbreviations MBP myelin basic protein - PMSF phenyl-methanesulfonylfluoride - PTP protein tyrosine phosphatase - RCML reduced, carboxyamidomethylated, maleylated lysozyme - YINAS Tyr-Ile-Asn-Ala-Ser  相似文献   

15.
The growth and phosphatase activity during phosphorus starvation of cultures of Nodularia spumigera Mertens were examined. Stationary phase was reached much sooner in phosphorus-deficient cultures than in phosphorus-sufficient cultures; the growth rate did not change. Phosphatase activities were greatly increased in stationary phase. Diurnal patterns were established for phosphorus-sufficient cultures, but they were not light related. In phosphorus-deficient cultures, an increase in phosphatase activities over a 24 h period was superimposed on a diurnal pattern. Both phosphorus and nitrogen additions lowered the relative phosphatase activities in long term studies, but the effect of phosphorus was much more pronounced. In short term studies, phosphorus appeared to cause an immediate decrease in phosphatase activity, but did not affect phosphatase activity after that for up to 24 h. Nitrogen did not have any short term effect on phosphatase. Phosphatase activity was correlated with changes in the proportion of TCA-insoluble phosphorus (polyphosphates).  相似文献   

16.
Cell-bound alkaline phosphatase ofBacillus cereus was produced during vegetative growth and sporulation in a complex medium. Addition of glucose repressed the sporulation process and the amount of enzyme synthesized increased. The time course of alkaline phosphatase production is very similar in both sporulating and non-sporulating cells. Irrespective of sporulation, alkaline phosphatase level shows a peak of activity in the exponential phase, and another in the stationary phase of growth. This preliminary data indicates differences betweenB. cereus, andB. subtilis in alkaline phosphatase characteristics.  相似文献   

17.
The development of glycolate pathway enzymes has been determined in relation to photosynthetic competence during the regreening of Euglena cultures. Phosphoglycolate phosphatase and glycolate dehydrogenase rapidly reached maximal levels of activity but the complete development of ribulose 1,5-diphosphate carboxylase and concomitant photosynthetic carbon dioxide fixation were not attained until 72 hours of illumination. Specific inhibitors of protein synthesis showed that the formation of ribulose 1,5-diphosphate carboxylase in both division-synchronized and regreening cultures was prevented by both cycloheximide and d-threo-chloramphenicol, whereas phosphoglycolate phosphatase formation was only inhibited by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide. Since cycloheximide prevented ribulose diphosphate carboxylase synthesis and photosynthetic carbon dioxide fixation without affecting phosphoglycolate phosphatase synthesis during regreening, it was concluded that photosynthetic competence was not necessary for the development of the glycolate pathway enzymes. The inhibition of phosphoglycolate phosphatase synthesis by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide shows that the enzyme was synthesized exclusively on chloroplast ribosomes, whereas protein synthesis on both chloroplast and cytoplasmic ribosomes was required for the formation of ribulose 1,5-diphosphate carboxylase. Although light is required for the development of both Calvin cycle and glycolate pathway enzymes during regreening it is concluded that the two pathways are not coordinately regulated.  相似文献   

18.
Activity of pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) was investigated in relation to carbohydrate metabolism and physiological growth stage in mixotrophic soybean (Glycine max Merr.) suspension cells. In the presence of exogenous sugars, log phase growth occurred and the cells displayed mixotrophic metabolism. During this stage, photosynthetic oxygen evolution was depressed and sugars were assimilated from the medium. Upon depletion of medium sugar, oxygen evolution and chlorophyll content increased, and cells entered stationary phase. Activities of various enzymes of glycolysis and sucrose metabolism, including PFP, sucrose synthase, fructokinase, glucokinase, UDP-glucose pyrophosphorylase, and fructose-1,6-bisphosphatase, changed as the cells went from log to stationary phases of growth. The largest change occurred in the activity of PFP, which was three-fold higher in log phase cells. PFP activity increased in cells grown on media initially containing sucrose, glucose, or fructose and began to decline when sugar in the medium was depleted. Western blots probed with antibody specific to the -subunit of potato PFP revealed a single 56 kilodalton immunoreactive band that changed in intensity during the growth cycle in association with changes in total PFP activity. The level of fructose-2,6-bisphosphate, an activator of the soybean PFP, increased during the first 24 hours after cell transfer and returned to the stationary phase level prior to the increase in PFP activity. Throughout the growth cycle, the calculated in vivo cytosolic concentration of fructose-2,6-bisphosphate exceeded by more than two orders of magnitude the previously reported activation coefficient (Ka) for soybean PFP. These results indicate that metabolism of exogenously supplied sugars by these cells involves a PFP-dependent step that is not coupled directly to sucrose utilization. Activity of this pathway appears to be controlled by changes in the level of PFP, rather than changes in the total cytosolic level of fructose-2,6-bisphosphate.  相似文献   

19.
Changes during growth in the activity of several enzymes involved in purine "salvage", adenine phosphoribosyltransferase (EC 2.4.2.7), guanine phosphoribosyl-transferase (EC 2.4.2.8), hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) and adenosine kinase (EC 2.7.1.20), the enzymes which catalyze the conversion of nucleoside monophosphate to triphosphate, nucleoside monophosphate kinase (EC 2.7.4.4) and nucleoside diphosphate kinase (EC 2.7.4.6), and several degradation enzymes, deoxyribonucleae(s), ribonuclease(s). phosphatase(s), nucleosidase (EC 3.2.2.1), 3'-nucleotidase (EC 3.1.3.6) and 5'-nucleotidase (EC 3.1.3.5) were examined in cells of Catharanthus roseus (L.) G. Don cultured in suspension. In addition, the incorporation of [8-14C] adenine, [8-14C] adenine, [8-14C]hypoxanthine. [8-14C] adenosine and [8-14C]inosine into nucleotides and nucleic acids was also determined using intact cells.
The activities of all purine "salvage" enzymes examined and those of nucleoside monophosphate and diphosphate kinases increased rapidly during the lag phase and decreased during the following cell division and cell expansion phases. The rate of incorporation of adenine, guanine, hypoxanthine, and adenosine into nucleotides and nucleic acids was higher in the lag phase cells than during the following three phases. The highest rate of [8-14C]inosine incorporation was observed in the stationary phase cells. The activity of all degradation enzymes examined decreased when the stationary phase cells were transferred to a new medium.
These results indicated that the increased activity of purine "salvage" enzymes observed in the lag phase cells may contribute to an active purine "salvage" which is required to initiate a subsequent cell division.  相似文献   

20.
Phytases catalyze the release of phosphate from phytate (myo-inositol hexakisphosphate) to inositol polyphosphates. Raoultella terrigena comb.nov. phytase activity is known to increase markedly after cells reach the stationary phase. In this study, phytase activity measurements made on single batch cultures indicated that specific enzyme activity was subject to catabolite repression. Cyclic AMP (cAMP) showed a positive effect in expression during exponential growth and a negative effect during stationary phase. RpoS exhibited the opposite effect during both growth phases; the induction to stationary phase decreased twofold in the rpoS::Tn10 mutant, but the effect of RpoS was not clearly determined. Two phy::MudI1734 mutants, MW49 and MW52, were isolated. These formed small colonies in comparison with the MW25 parent strain when plated on Luria-Bertani (LB) or LB supplemented with glucose. They did not grow in minimal media or under anaerobiosis, but did grow aerobically on LB and LB glucose at a lower rate than did MW25. The beta-galactosidase activity level in these mutants increased three to four fold during stationary growth in LB glucose and during anaerobiosis. Addition of cAMP during the exponential growth of MW52 on LB glucose provoked a decrease in beta-galactosidase activity during the stationary phase, confirming its negative effect on phytase expression during stationary growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号