首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although homocysteine (Hcy) inhibits angiogenesis in vivo and in vitro, the mechanism(s) underlying this phenomenon are largely unclear. The hypothesis of the present work is that Hcy, while inducing the expression of antiangiogenic factors, inhibits the production of angiogenic factors. Mouse brain microvascular endothelial cells (MVEC) were cultured in the presence and absence of 20 microM Hcy for 24 hr in serum-free medium. Cell homogenates were incubated with Trans-Signal Angiogenesis Antibody Array containing antibodies to angiogenic activators (ANG, HGF, leptin, VEGF, IL-6, IL-8, PIGF, FGF-alpha/beta, TNF-alpha and TGF-alpha) and inhibitors (IFN-gamma, IL-12, IP-10, TIMP-1 and -2). The array membranes were scanned and normalized with positive controls. Angiogenesis and formation of capillaries were measured by culturing the MVEC in Matrigels. The capillary-like structures were identified by transmission microscopy. Hcy decreased the expression of leptin, IL-6, -8, PIGF, FGF-alpha and VEGF, while the levels of anti-angiogenic IL-12, IP-10 (chemokine) and TIMP-1 were increased by Hcy. The vascular tube-like structures by MVEC were decreased by increased Hcy. However, the addition of VEGF to Hcy-treated MVEC ameliorated the decreased Hcy-mediated capillary formation. The results suggest that Hcy inhibits angiogenesis, in part, by decreasing VEGF and increasing TIMP-1.  相似文献   

2.
3.
IL-8, a member of the chemokine family, has been shown to play an important role in tumor growth, angiogenesis, and metastasis. The objective of this study was to determine the mechanism of IL-8-mediated angiogenesis. We examined the direct role of IL-8 in angiogenesis by examining IL-8 receptor expression on endothelial cells and their proliferation, survival, and matrix metalloproteinases (MMPs) production. We demonstrate that HUVEC and human dermal microvascular endothelial cells constitutively express CXCR1 and CXCR2 mRNA and protein. Recombinant human IL-8 induced endothelial cell proliferation and capillary tube organization while neutralization of IL-8 by anti-IL-8 Ab blocks IL-8-mediated capillary tube organization. Incubation of endothelial cells with IL-8 inhibited endothelial cell apoptosis and enhanced antiapoptotic gene expression. Endothelial cells incubated with IL-8 had higher levels of Bcl-x(L):Bcl-x(S) and Bcl-2:Bax ratios. Furthermore, incubation of endothelial cells with IL-8 up-regulated MMP-2 and MMP-9 production and mRNA expression. Our data suggest that IL-8 directly enhanced endothelial cell proliferation, survival, and MMP expression in CXCR1- and CXCR2-expressing endothelial cells and regulated angiogenesis.  相似文献   

4.
Adiponectin is an adipocyte-specific adipocytokine with anti-atherogenic and anti-diabetic properties. Here, we investigated whether adiponectin regulates angiogenic processes in vitro and in vivo. Adiponectin stimulated the differentiation of human umbilical vein endothelium cells (HUVECs) into capillary-like structures in vitro and functioned as a chemoattractant in migration assays. Adiponectin promoted the phosphorylation of AMP-activated protein kinase (AMPK), protein kinase Akt/protein kinase B, and endothelial nitric oxide synthesis (eNOS) in HUVECs. Transduction with either dominant-negative AMPK or dominant-negative Akt abolished adiponectin-induced eNOS phosphorylation as well as adiponectin-stimulated HUVEC migration and differentiation. Dominant-negative AMPK also inhibited adiponectin-induced Akt phosphorylation, suggesting that AMPK is upstream of Akt. Dominant-negative Akt or the phosphatidylinositol 3-kinase inhibitor LY294002 blocked adiponectin-stimulated Akt and eNOS phosphorylation, migration, and differentiation without altering AMPK phosphorylation. Finally, adiponectin stimulated blood vessel growth in vivo in mouse Matrigel plug implantation and rabbit corneal models of angiogenesis. These data indicate that adiponectin can function to stimulate the new blood vessel growth by promoting cross-talk between AMP-activated protein kinase and Akt signaling within endothelial cells.  相似文献   

5.
This research was supported by a grant from the William Beaumont Hospital Research Institute.  相似文献   

6.
Microvascular endothelial cells (HMECs) express both the CXCR1 and the CXCR2, but cell migration is almost entirely mediated by the CXCR2. Similarly, NIH 3T3 cells transfected with the CXCR2 migrated toward IL-8, whereas CXCR1-transfected cells failed to do so. This situation differs from that seen in leukocytes, where chemotaxis is primarily a function of the CXCR1. To define signal transduction pathways that explain this difference in behavior, various inhibitors were used to block cell migration. Apart from inhibitors of phosphatidylinositol 3-kinase, which blocked migration in all cases, inhibition of the epidermal growth factor (EGF) receptor blocked IL-8-mediated cell migration in HMECs and in CXCR2-transfected NIH 3T3 cells, but not in RBL2H3 cells, which do not express an EGFR. Blocking Abs against the EGFR or against heparin-binding EGF-like growth factor similarly blocked IL-8-mediated cell migration and in vitro tubulogenesis in HMECs. Furthermore, inhibition of the EGFR also attenuated focus formation in NIH 3T3 expressing the CXCR2. Immunoprecipitations of the EGFR in HMECs and in NIH 3T3 cells expressing the CXCR2 confirmed that the EGFR was phosphorylated following stimulation with IL-8. However, in contrast to previous reports, e.g., for the thrombin receptor, inhibition of matrix metalloproteases blocked IL-8-mediated cell migration only partially, whereas it was ablated by inhibition of cathepsin B. These results indicate that IL-8-induced transactivation of the EGFR is mediated by the CXCR2 and involves cathepsin B, and that this pathway is important for the migratory and tumorigenic effects of IL-8.  相似文献   

7.
8.
Little is known about the distinct roles of the two types of IL-4R on DC. Here we report that IL-4 and IL-13 are able to promote DC maturation, as evaluated by up-regulation of MHC class II and costimulatory molecules, when the concentration of GM-CSF is relatively lower than the dose of IL-4 or IL-13. In addition, under these conditions both cytokines enable DC to respond to maturation stimuli such as bacterial products or proinflammatory cytokines. Both IL-4 and IL-13 act synergistically with weak maturation stimuli such as TNF-alpha or CD40. The IL-4R signaling for DC maturation requires the IL-4R alpha-chain and STAT6, but not Janus kinase 3, indicating that IL-4R type II signaling is preferentially responsible for these effects. In contrast, the production of IL-12 p70, but not IL-10 and TNF, induced by microbial products was enhanced only by IL-4, not by IL-13 or Y119D, a selective type II IL-4R agonist, in vitro and in vivo. This enhancement was dependent on the presence of Janus kinase 3, indicating that this function is exclusively mediated by the type I IL-4R. In short, we discerned the individual roles of the two IL-4R types on DC function, showing that IL-4R type I promotes IL-12 secretion independently of GM-CSF concentration, while IL-4R type II promotes the up-regulation of MHC class II and costimulatory surface markers in a GM-CSF concentration-dependent manner.  相似文献   

9.
In spite of the current optimal therapy, the mortality of patients with ischemic heart disease (IHD) remains high, particularly in cases with diabetes mellitus (DM) as a co-morbidity. Myocardial infarct size is a major determinant of prognosis in IHD patients, and development of a novel strategy to limit infarction is of great clinical importance. Ischemic preconditioning (PC), postconditioning (PostC) and their mimetic agents have been shown to reduce infarct size in experiments using healthy animals. However, a variety of pharmacological agents have failed to demonstrate infarct size limitation in clinical trials. One of the possible reasons for the discrepancy between the results of animal experiments and clinical trials is that co-morbidities, including DM, modified myocardial responses to ischemia/reperfusion and to cardioprotective agents. Here we summarize observations of the effects of DM on myocardial infarct size and ischemic PC and PostC and discuss perspectives for protection of DM hearts.  相似文献   

10.
ABSTRACT: BACKGROUND: Far infra-red (IFR) therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC) and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process.Materials and methodsStarting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ)-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group). The latter mice were placed in an IFR dry sauna at 34[DEGREE SIGN]C for 30 min once per day for 5 weeks. RESULTS: Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+) mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group). However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. CONCLUSIONS: Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ-induced diabetic mice, and these beneficial effects may derive from enhancement of EPC functions and homing process.  相似文献   

11.
12.
Leishmania amazonensis induces a nonhealing infection in C3H mice, whereas infection with Leishmania major is self-healing. We found that C3H mice infected with L. amazonensis exhibited decreased IL-12 production, which could account for the susceptibility to this organism. However, exogenous IL-12 administration failed to induce a healing immune response. The failure of L. amazonensis-infected C3H mice to respond to IL-12 was associated with a specific defect in IL-12 receptor beta2 (IL-12Rbeta2) mRNA expression by CD4+ T cells. Furthermore, decreased IL-12Rbeta2 mRNA expression correlated with a decrease in the IL-12-signaling capacity of the lymph node (LN) cells. IL-4 did not contribute to susceptibility or down-regulation of the IL-12Rbeta2 subunit, because IL-4-/- mice remained susceptible to L. amazonensis infection, even after IL-12 administration, and CD4+ cells from infected IL-4-/- mice also had reduced expression of IL-12Rbeta2 mRNA. These results demonstrate that regulation of the IL-12 receptor, independent of IL-4, is a point of control for the immune response to leishmaniasis. In contrast to experimental L. major infections, where host genetics control susceptibility, these studies demonstrate that the lack of IL-12 responsiveness may be dictated by the pathogen, rather than the host.  相似文献   

13.
Biomechanics and Modeling in Mechanobiology - Tumour-induced angiogenesis is a complex biological process that involves growth of new blood vessels within the tumour microenvironment and is an...  相似文献   

14.
Previously we reported that mucosal IL-10 DNA administration resulted in long-term suppression of virus-induced inflammatory responses by silencing Th1-type CD4+ T cell functions. However, the mechanism by which IL-10 silences the activity of CD4+ T cells was not clear. The present report has shown that mucosal IL-10 DNA administration led to the reduction of reactivity of T cells following TCR stimulation. IL-10 DNA also downregulated APC functions to stimulate T cells but the effect was temporary. Bystander suppression, including that of IL-10 producing regulatory cells, appeared not to be directly involved in the inhibition of T cell reactivity because both anti-IL-10 and anti-IL-10R could not block the suppression of T cell functions. This silenced state could be maintained following adoptive transfer to untreated animals. The nature of the silencing appears to be a reversible anergic state since Ag stimulation in the presence of exogenous IL-2 restored T cell reactivity. Furthermore, IL-10-induced silenced T cells could be induced in vitro by culturing the T cells with rIL-10 in the presence or the absence of antigen stimulation. This state persisted in the absence of rIL-10 and persisted for at least 3 days. A more notable effect, however, was observed when the T cells were incubated with IL-10 in the presence of APC and Ag. These results indicate that IL-10 induced a long-term silenced state in T cells by direct and indirect inhibition of T cell functions.  相似文献   

15.
Understanding the factors that influence T helper 1 (T(H)1)- and T(H)2-cell responses has been one of the main focuses of immunology for almost 20 years. Whereas the central role of interleukin-12 (IL-12) in the generation of T(H)1 cells has long been appreciated, subsequent studies indicated that IL-23 and IL-27, two cytokines that are closely related to IL-12, also regulate T(H)1-cell responses. However, as discussed in this article, it is now recognized that the ability of IL-23 to stimulate a unique T-cell subset to produce IL-17 has a dominant role in autoimmune inflammation. By contrast, IL-27 has a role in limiting the intensity and duration of adaptive immune responses.  相似文献   

16.
17.
We report that human peripheral NK cells expressing high CD56 levels (CD56(+high)) are terminally differentiated cells indistinguishable from mature NK cells recently activated in the presence of IL-12, and not a functionally distinct NK-cell subset or progenitors to mature CD56(+low) NK cells. CD56(+high) NK cells coexpress all differentiation Ags constitutive or inducible in mature (CD56(+)) NK cells, except CD16, present at lower level than on most mature NK cells. Also, activation markers, activating receptors and adhesion molecules, and most inducible receptors are expressed exclusively and constitutively and are inducible at higher levels on CD56(+high) than on CD56(+low) NK cells. Consistent with their activated phenotype, many CD56(+high) NK cells are cycling and mediate heightened effector functions (proliferation, IFN-gamma and IL-10 but not IL-13 production) in response to IL-12 and other NK cell-specific stimuli. Conversely, IL-12 induces on CD56(+low) NK cells all markers constitutively expressed on the CD56(+high) NK cells, concomitantly preventing the IL-2 (and IL-15)-inducible expression of NKp44 and CD16 re-expression after immune complex-induced down-modulation, and CD56(-/+low) NK cells acquire a CD56(+high) NK cell phenotype in short term in vitro culture with IL-12. The significance of these findings to the NK cell-mediated regulation of immune responses and NK cell development is discussed.  相似文献   

18.
Endothelium lining the inner surface of all vessels plays barrier role and regulates permeability of vascular walls controling the exchange between circulating blood and tissue fluids. Disturbance of normal functions (endothelial dysfunction) can be caused by both internal, and external factors. Endothelial dysfunction is characterized by increased vascular wall permeability observed in many human diseases. Dysfunction is also a drug side effect of oncological diseases treatment by mitosis-blocking medications. Depolymerization of microtubules is the first step in the cascade of reactions leading to endothelial barrier dysfunction, and this stage is universal, it does not depend upon the nature of a factor provoking dysfunction. To develop the strategy of barrier dysfunction prevention, we are supposed here to find out to what stage the endothelial cell cytoskeleton reaction during the development of barrier dysfunction is universal. It has been found that the cascade stages, which follow the microtubule depolymerization and are connected with Rho-Rho-kinases activity, have the features depending on the factor provoking barrier dysfunction. Under suppression of Rho-kinase activity, the reaction of actin filaments does not depend on what substance caused dysfunction. But the microtubule system responds to the treatment varies depending on the dysfunction-provoking factor. Unlike thrombin, under the conditions of Rho-kinase activity suppression, nocodazole renders more strong effect, as much as possible destroying both dynamic, and stable microtubules. Thus, regardless of the dysfunction provoking factor, the initial stages of dysfunction connected with the depolymerization of microtubules appear to be unalterable. Consequently, endothelial cell defence strategy should be based on cytoplasmatic microtubules protectors application instead of employment of the factors involved in the cascade at later stages as we assumed earlier.  相似文献   

19.
Three clonal strain types (I, II, and III) of Toxoplasma gondii predominate worldwide. The outcome of infection in mice is highly dependent on the parasite genotype with type I strains being uniformly virulent, while types II and III are nonvirulent. Interactions with the innate immune response play a major role in determining the outcome of infection in the murine model. To identify key early differences in the innate immune response that contribute to pathogenesis, we examined the cytokine production of macrophages after in vitro infection with parasites of virulent type I and nonvirulent type II genotypes. Infection with type II strain parasites stimulated the production of proinflammatory cytokines, and particularly high levels of the Th1-polarizing cytokine, IL-12. Infection with type II strain parasites stimulated NF-kappaB nuclear translocation at early time points and led to the up-regulation of mRNA levels of IL-12 and other proinflammatory cytokines that was dependent on the myeloid differentiation factor 88 signaling pathway. Induction of IL-12 required active invasion by live parasites and was not blocked by infection with virulent type I strain parasites, arguing against an active inhibition of signaling. Our findings suggest that early induction of high levels of IL-12 by macrophages infected with type II strain parasites may contribute to more effective control.  相似文献   

20.
Myoseverin, a new microtubule-binding molecule, acts reversibly on myoblast proliferation without the cytotoxic effects displayed by nonpurine-based microtubule-disrupting molecules, like taxol, vinblastine, nocodazole, and the colchicines. In this study, we examined the effects of myoseverin on in vitro function of endothelial cells and endothelial progenitor cell differentiation in order to explore the possibility for the application of myoseverin as a reversible antiangiogenic agent. Myoseverin potently inhibited proliferation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner with an IC50 of approximately 8 microM. When myoseverin was removed after treatment for 3 days, all the cells pretreated at a concentration range of 2.5-80 microM resumed the cell growth. It also inhibited VEGF-induced HUVEC migration dose dependently. When mononuclear cells (MNCs) isolated from human cord blood were cultured on fibronectin-coated plates for 7 days, myoseverin decreased the number of adherent cells in a dose-dependent manner with IC50 of approximately 9 microM. It also suppressed the development of ac-LDL uptake ability as well as the expression of endothelial lineage markers, KDR, CD31, and vWF. Finally, it inhibited formation of HUVECs or ex vivo cultivated EPCs into capillary-like structure on Matri-gel and in vivo angiogenesis on the chick chorioallantoic membrane. Therefore, these results suggest that myoseverin can be effectively used for the inhibition of new vessel growth by inhibiting endothelial cell function and differentiation of progenitor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号