首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Myosin is an actin-based molecular motor that constitutes a diverse superfamily. In contrast to conventional myosin, which binds to actin for only a short time during cross-bridge cycling, recent studies have demonstrated that class V myosin moves along actin filaments for a long distance without dissociating. This would make it suitable for supporting cargo movement in cells. Because myosin V has a two-headed structure with an expanded neck domain, it has been postulated to 'walk' along the 36-nm helical repeat of the actin filament, with one head attached to the actin and leading the other head to the neighbouring helical pitch. Here, we report that myosin IXb, a single-headed myosin, moves processively on actin filaments. Furthermore, we found that myosin IXb is a minus-end-directed motor. In addition to class VI myosin, this is the first myosin superfamily member identified that moves in the reverse direction. The processive movement of the single-headed myosin IXb cannot be explained by a 'hand-over-hand' mechanism. This suggests that an alternative mechanism must be operating for the processive movement of single-headed myosin IXb.  相似文献   

2.
Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large ( approximately 36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large ( approximately 36 nm) steps and it is believed that myosin V strides along the actin helical repeat with its elongated neck domain that is critical for its processive movement with large steps. Myosin VI having a short neck cannot take this scenario. We found by electron microscopy that myosin VI cooperatively binds to an actin filament at approximately 36 nm intervals in the presence of ATP, raising a hypothesis that the binding of myosin VI evokes "hot spots" on actin filaments that attract myosin heads. Myosin VI may step on these "hot spots" on actin filaments in every helical pitch, thus producing processive movement with 36 nm steps.  相似文献   

3.
The processive motor myosin V has a high affinity for actin in the weak binding states when compared with non-processive myosins. Here we test whether this feature is essential for myosin V to walk processively along an actin filament. The net charge of loop 2, a surface loop implicated in the initial weak binding between myosin and actin, was increased or decreased to correspondingly change the affinity of myosin V for actin in the weak binding state, without changing the velocity of movement. Processive run lengths of single molecules were determined by total internal reflection fluorescence microscopy. Reducing the net positive charge of loop 2 significantly decreased both the affinity of myosin V for actin and the processive run length. Conversely, the addition of positive charge to loop 2 increased actin affinity and processive run length. We hypothesize that a high affinity for actin allows the detached head of a stepping myosin V to find its next actin binding site more quickly, thus decreasing the probability of run termination.  相似文献   

4.
Myosin V is an unconventional myosin that transports cargo such as vesicles, melanosomes, or mRNA on actin filaments. It is a two-headed myosin with an unusually long neck that has six IQ motifs complexed with calmodulin. In vitro studies have shown that myosin V moves processively on actin, taking multiple 36-nm steps that coincide with the helical repeat of actin. This allows the molecule to "walk" across the top of an actin filament, a feature necessary for moving large vesicles along an actin filament bound to the cytoskeleton. The extended neck length of the two heads is thought to be critical for taking 36-nm steps for processive movements. To test this hypothesis we have expressed myosin V heavy meromyosin-like fragments containing 6IQ motifs, as well as ones that shorten (2IQ, 4IQ) or lengthen (8IQ) the neck region or alter the spacing between 3rd and 4th IQ motifs. The step size was proportional to neck length for the 2IQ, 4IQ, 6IQ, and 8IQ molecules, but the molecule with the altered spacing took shorter than expected steps. Total internal reflection fluorescence microscopy was used to determine whether the heavy meromyosin IQ molecules were capable of processive movements on actin. At saturating ATP concentrations, all molecules except for the 2IQ mutant moved processively on actin. When the ATP concentration was lowered to 10 microm or less, the 2IQ mutant demonstrated some processive movements but with reduced run lengths compared with the other mutants. Its weak processivity was also confirmed by actin landing assays.  相似文献   

5.
Sakamoto T  Yildez A  Selvin PR  Sellers JR 《Biochemistry》2005,44(49):16203-16210
The highly processive motor, myosin V, has an extremely long neck containing six calmodulin-binding IQ motifs that allows it to take multiple 36 nm steps corresponding to the pseudo-repeat of actin. To further investigate how myosin V moves processively on actin filaments, we altered the length of the neck by adding or deleting IQ motifs in myosin constructs lacking the globular tail domain. These myosin V IQ mutants were fluorescently labeled by exchange of a single Cy3-labeled calmodulin into the neck region of one head. We measured the step-size of these individual IQ mutants with nanometer precision and subsecond resolution using FIONA. The step-size was proportional to neck length for constructs containing 2, 4, 6, and 8 IQ motifs, providing strong support for the swinging lever-arm model of myosin motility. In addition, the kinetics of stepping provided additional support for the hand-over-hand model whereby the two heads alternately assume the leading position. Interestingly, the 8IQ myosin V mutant gave a broad distribution of step-sizes with multiple peaks, suggesting that this mutant has many choices of binding sites on an actin filament. These data demonstrate that the step-size of myosin V is affected by the length of its neck and is not solely determined by the pseudo-repeat of the actin filament.  相似文献   

6.
Myosin V is an actin-based motor protein involved in intracellular cargo transport [1]. Given this physiological role, it was widely assumed that all class V myosins are processive, able to take multiple steps along actin filaments without dissociating. This notion was challenged when several class?V myosins were characterized as nonprocessive in?vitro, including Myo2p, the essential class V myosin from S.?cerevisiae [2-6]. Myo2p moves cargo including secretory vesicles and other organelles for several microns along actin cables in?vivo. This demonstrated cargo transporter must therefore either operate in small ensembles or?behave processively in the cellular context. Here we show?that Myo2p moves processively in?vitro as a single motor when it walks on an actin track that more closely resembles the actin cables found in?vivo. The key to processivity is tropomyosin: Myo2p is not processive on bare actin?but highly processive on actin-tropomyosin. The major yeast tropomyosin isoform, Tpm1p, supports the most robust processivity. Tropomyosin slows the rate of MgADP release, thus increasing the time the motor spends strongly attached to actin. This is the first example of tropomyosin switching a motor from nonprocessive to processive motion on actin.  相似文献   

7.
The double-headed myosin V molecular motor carries intracellular cargo processively along actin tracks in a hand-over-hand manner. To test this hypothesis at the molecular level, we observed single myosin V molecules that were differentially labeled with quantum dots having different emission spectra so that the position of each head could be identified with approximately 6-nm resolution in a total internal reflectance microscope. With this approach, the individual heads of a single myosin V molecule were observed taking 72-nm steps as they alternated positions on the actin filament during processive movement. In addition, the heads were separated by 36 nm during pauses in motion, suggesting attachment to actin along its helical repeat. The 36-nm interhead spacing, the 72-nm step size, and the observation that heads alternate between leading and trailing positions on actin are obvious predictions of the hand-over-hand model, thus confirming myosin V's mode of walking along an actin filament.  相似文献   

8.
Class VI myosin is an intracellular vesicle and organelle transporter that moves along actin filaments in a direction opposite to most other known myosin classes. The myosin-VI was expected to form a dimer to move processively along actin filaments with a hand-over-hand mechanism like other myosin organelle transporters. Recently, however, wild-type myosin-VI was demonstrated to be monomer and single-headed, casting a doubt on its processivity. By using single molecule techniques, we show that green-fluorescent-protein-tagged single-headed, wild-type myosin-VI does not move processively. However, when coupled to 200-nm polystyrene beads (comparable to intracellular vesicles in size) at a ratio of one head per bead, single-headed myosin-VI moves processively with large (40-nm) steps. The characteristics of this monomer-driven movement were different to that of artificial dimer-driven movement: Compared to the artificial dimer, the monomer-bead complex had a reduced stall force (1 pN compared to 2 pN), an average run length 2.5-fold shorter (91 nm compared to 220 nm) and load-dependent step size. Furthermore, we found that a monomer-bead complex moved more processively in a high viscous solution (40-fold higher than water) similar to cellular environment. Because the diffusion constant of the bead is 60-fold lower than myosin-VI heads alone in water, we propose a model in which the bead acts as a diffusional anchor for the myosin-VI, enhancing its rebinding following detachment and supporting processive movement of the bead-monomer complexes. Although a single-headed myosin-VI was able to move processively with a large cargo, the travel distance was rather short. Multiple molecules may be involved in the cargo transport for a long travel distance in cells.  相似文献   

9.
It is widely accepted that the vesicle-transporter myosin-V moves processively along F-actin with large steps of approximately 36 nm using a hand-over-hand mechanism. A key question is how does the rear head of two-headed myosin-V search for the forward actin target in the forward direction. Scanning probe nanometry was used to resolve this underlying search process, which was made possible by attaching the head to a relatively large probe. One-headed myosin-V undergoes directional diffusion with approximately 5.5 nm substeps to develop an average displacement of approximately 20 nm, which was independent of the neck length (2IQ and 6IQ motifs). Two-headed myosin-V showed several approximately 5.5 nm substeps within each processive approximately 36 nm step. These results suggest that the myosin-V head searches in the forward direction for the actin target using directional diffusion on the actin subunits according to a potential slope created along the actin helix.  相似文献   

10.
Class IX myosins are unique among the many classes of known actin-based motors in that the tail region of these myosins contains a GTPase-activating protein domain for the small GTP-binding protein, Rho. Previous studies on human myosin-IXb indicate that this myosin is mechanochemically active and exhibits actin-binding properties similar to the processive motor, myosin-Va. Motility analysis of antibody-tethered myosin-IXb performed using the sliding actin filament assay indicates that this myosin does exhibit properties characteristic of a processive motor. Like myosin-Va, the velocity of myosin-IXb remains constant (38.2 +/- 1.2 nm/s) even at single motor/filament densities. At low motor densities, filaments can be seen passing through and pivoting about single points on the motility surface. Analysis of filament landing rates as a function of motor density also indicates that a single motor is sufficient for filament movement. However, in contrast to myosin-Va, which uses coordinated motion of its two heads to move processively along the filament, hydrodynamic and chemical cross-linking studies indicate that under the conditions tested, myosin-IXb is a single-headed motor consisting of a single heavy chain and associated light chains.  相似文献   

11.
Iwaki M  Iwane AH  Ikebe M  Yanagida T 《Bio Systems》2008,93(1-2):39-47
Conventional form to function as a vesicle transporter is not a 'single molecule' but a coordinated 'two molecules'. The coordinated two molecules make it complicated to reveal its mechanism. To overcome the difficulty, we adopted a single-headed myosin-VI as a model protein. Myosin-VI is an intracellular vesicle and organelle transporter that moves along actin filaments in a direction opposite to most other known myosin classes. The myosin-VI was expected to form a dimer to move processively along actin filaments with a hand-over-hand mechanism like other myosin organelle transporters. However, wild-type myosin-VI was demonstrated to be monomer and single-headed, casting doubt on its processivity. Using single molecule techniques, we show that green fluorescent protein (GFP)-fused single-headed myosin-VI does not move processively. However, when coupled to a 200 nm polystyrene bead (comparable to an intracellular vesicle in size) at a ratio of one head per bead, single-headed myosin-VI moves processively with large (40 nm) steps. Furthermore, we found that a single-headed myosin-VI-bead complex moved more processively in a high-viscous solution (40-fold higher than water) similar to cellular environment. Because diffusion of the bead is 60-fold slower than myosin-VI heads alone in water, we propose a model in which the bead acts as a diffusional anchor for the myosin-VI, enhancing the head's rebinding following detachment and supporting processive movement of the bead-monomer complex. This investigation will help us understand how molecular motors utilize Brownian motion in cells.  相似文献   

12.
Although class IX myosins are single-headed, they demonstrate characteristics of processive movement along actin filaments. Double-headed myosins that move processively along actin filaments achieve this by successive binding of the two heads in a hand-over-hand mechanism. This mechanism, obviously, cannot operate in single-headed myosins. However, it has been proposed that a long class IX specific insertion in the myosin head domain at loop2 acts as an F-actin tether, allowing for single-headed processive movement. Here, we tested this proposal directly by analysing the movement of deletion constructs of the class IX myosin from Caenorhabditis elegans (Myo IX). Deletion of the large basic loop2 insertion led to a loss of processive behaviour, while deletion of the N-terminal head extension, a second unique domain of class IX myosins, did not influence the motility of Myo IX. The processive behaviour of Myo IX is also abolished with increasing salt concentrations. These observations directly demonstrate that the insertion located in loop2 acts as an electrostatic actin tether during movement of Myo IX along the actin track.  相似文献   

13.
Single molecules of dimeric myosin-VI have been demonstrated to be able to move processively towards the pointed end of actin filament with a mean step size of approximately 36 nm. Here we present a hand-over-hand diffusing mechanism for this unidirectional movement. Based on this mechanism, its dynamical behaviors such as the step-size distribution, dwell-time distributions and mean dwell time at various ATP and ADP concentrations and under various loads are studied in detail. The calculated results show good agreement with previous experimental results. The processive movement of mutant myosin-V with its neck domains truncated to only one IQ motif can also be explained by using this hand-over-hand diffusing model.  相似文献   

14.
Myosin VI is a two-headed molecular motor that moves along an actin filament in the direction opposite to most other myosins. Previously, a single myosin VI molecule has been shown to proceed with steps that are large compared to its neck size: either it walks by somehow extending its neck or one head slides along actin for a long distance before the other head lands. To inquire into these and other possible mechanism of motility, we suspended an actin filament between two plastic beads, and let a single myosin VI molecule carrying a bead duplex move along the actin. This configuration, unlike previous studies, allows unconstrained rotation of myosin VI around the right-handed double helix of actin. Myosin VI moved almost straight or as a right-handed spiral with a pitch of several micrometers, indicating that the molecule walks with strides slightly longer than the actin helical repeat of 36 nm. The large steps without much rotation suggest kinesin-type walking with extended and flexible necks, but how to move forward with flexible necks, even under a backward load, is not clear. As an answer, we propose that a conformational change in the lifted head would facilitate landing on a forward, rather than backward, site. This mechanism may underlie stepping of all two-headed molecular motors including kinesin and myosin V.  相似文献   

15.
Class V myosin (myosin-V) is a cargo transporter that moves along an actin filament with large (∼36-nm) successive steps. It consists of two heads that each includes a motor domain and a long (23 nm) neck domain. One of the more popular models describing these steps, the hand-over-hand model, assumes the two-headed structure is imperative. However, we previously succeeded in observing successive large steps by one-headed myosin-V upon optimizing the angle of the acto-myosin interaction. In addition, it was reported that wild type myosin-VI and myosin-IX, both one-headed myosins, can also generate successive large steps. Here, we describe the mechanical properties (stepsize and stepping kinetics) of successive large steps by one-headed and two-headed myosin-Vs. This study shows that the stepsize and stepping kinetics of one-headed myosin-V are very similar to those of the two-headed one. However, there was a difference with regards to stability against load and the number of multisteps. One-headed myosin-V also showed unidirectional movement that like two-headed myosin-V required 3.5 kBT from ATP hydrolysis. This value is also similar to that of smooth muscle myosin-II, a non-processive motor, suggesting the myosin family uses a common mechanism for stepping regardless of the steps being processive or non-processive. In this present paper, we conclude that one-headed myosin-V can produce successive large steps without following the hand-over-hand mechanism.  相似文献   

16.
Processive stepping of myosin Va (myoV) has been tracked by monitoring either the tail position (center of mass) or the position of one or both heads. Here, we combine these two approaches by attaching a quantum dot to one of the motor domains and a bead to the tail. Using laser trapping and total internal reflection microscopy, the position of one head and the tail are observed simultaneously as myoV moves processively on an actin filament bundle against the resistive load of the laser trap. The head moves one step (73 ± 10 nm) for every two steps of the tail (35 ± 9 nm). One tail step occurs concurrently with quantum dot-labeled head movement, whereas the other occurs with movement of the unlabeled head, consistent with a hand-over-hand model. Load increases the probability of the motor taking a back step. The back step is triggered by the motor taking a shorter forward step (head step, 68 ± 11 nm; tail step, 32 ± 10 nm), likely one actin monomer short of its preferred binding site. During a back step, the motor reverses its hand-over-hand motion, with the leading head detaching and reattaching to one of multiple actin sites behind the trailing head. After a back step, the motor can correct its mistake and step processively forward at resistive loads <0.7 piconewton or stall or detach at higher loads. Back stepping may provide a mechanism to ensure efficient cargo delivery even when myoV encounters obstacles within the actin cytoskeletal meshwork or when other motors are attached to the same cargo.  相似文献   

17.
Mitochondria are fundamentally important in cell function, and their malfunction can cause the development of cancer, cardiovascular disease, and neuronal disorders. Myosin 19 (Myo19) shows discrete localization with mitochondria and is thought to play an important role in mitochondrial dynamics and function; however, the function of Myo19 in mitochondrial dynamics at the cellular and molecular levels is poorly understood. Critical missing information is whether Myo19 is a processive motor that is suitable for transportation of mitochondria. Here, we show for the first time that single Myo19 molecules processively move on actin filaments and can transport mitochondria in cells. We demonstrate that Myo19 dimers having a leucine zipper processively moved on cellular actin tracks in demembraned cells with a velocity of 50 to 60 nm/s and a run length of ∼0.4 μm, similar to the movement of isolated mitochondria from Myo19 dimer-transfected cells on actin tracks, suggesting that the Myo19 dimer can transport mitochondria. Furthermore, we show single molecules of Myo19 dimers processively moved on single actin filaments with a large step size of ∼34 nm. Importantly, WT Myo19 single molecules without the leucine zipper processively move in filopodia in living cells similar to Myo19 dimers, whereas deletion of the tail domain abolished such active movement. These results suggest that Myo19 can processively move on actin filaments when two Myo19 monomers form a dimer, presumably as a result of tail–tail association. In conclusion, Myo19 molecules can directly transport mitochondria on actin tracks within living cells.  相似文献   

18.
The motor protein kinesin has two heads and walks along microtubules processively using energy derived from ATP. However, how kinesin heads are coordinated to generate processive movement remains elusive. Here we created a hybrid nanomachine (DNA‐kinesin) using DNA as the skeletal structure and kinesin as the functional module. Single molecule imaging of DNA‐kinesin hybrid allowed us to evaluate the effects of both connect position of the heads (N, C‐terminal or Mid position) and sub‐nanometer changes in the distance between the two heads on motility. Our results show that although the native structure of kinesin is not essential for processive movement, it is the most efficient. Furthermore, forward bias by the power stroke of the neck linker, a 13‐amino‐acid chain positioned at the C‐terminus of the head, and internal strain applied to the rear of the head through the neck linker are crucial for the processive movement. Results also show that the internal strain coordinates both heads to prevent simultaneous detachment from the microtubules. Thus, the inter‐head coordination through the neck linker facilitates long‐distance walking.  相似文献   

19.
Mammalian myosin IXb (Myo9b) has been shown to exhibit unique motor properties in that it is a single-headed processive motor and the rate-limiting step in its chemical cycle is ATP hydrolysis. Furthermore, it has been reported to move toward the minus- and the plus-end of actin filaments. To analyze the contribution of the light chain-binding domain to the movement, processivity, and directionality of a single-headed processive myosin, we expressed constructs of Caenorhabditis elegans myosin IX (Myo9) containing either the head (Myo9-head) or the head and the light chain-binding domain (Myo9-head-4IQ). Both constructs supported actin filament gliding and moved toward the plus-end of actin filaments. We identified in the head of class IX myosins a calmodulin-binding site at the N terminus of loop 2 that is unique among the myosin superfamily members. Ca2+/calmodulin negatively regulated ATPase and motility of the Myo9-head. The Myo9-head demonstrated characteristics of a processive motor in that it supported actin filament gliding and pivoting at low motor densities. Quantum dot-labeled Myo9-head moved along actin filaments with a considerable run length and frequently paused without dissociating even in the presence of obstacles. We conclude that class IX myosins are plus-end-directed motors and that even a single head exhibits characteristics of a processive motor.  相似文献   

20.
Myosin VI moves processively along actin with a larger step size than expected from the size of the motor. Here, we show that the proximal tail (the approximately 80-residue segment following the IQ domain) is not a rigid structure but, rather, a flexible domain that permits the heads to separate. With a GCN4 coiled coil inserted in the proximal tail, the heads are closer together in electron microscopy (EM) images, and the motor takes shorter processive steps. Single-headed myosin VI S1 constructs take nonprocessive 12 nm steps, suggesting that most of the processive step is covered by a diffusive search for an actin binding site. Based on these results, we present a mechanical model that describes stepping under an applied load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号