首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main purpose of this study was to assess the validity of the Cosmed Fitmate (FM) for the prediction of maximal oxygen consumption (VO(2)max). In addition, this study examined whether measuring submaximal VO(2), rather than predicting it, can improve upon the prediction of VO(2)max. Participants for the study were 48 young to middle-age adults (32 men, 16 women), with a mean age of 31 yr. Each participant completed a submaximal and maximal treadmill test on 2 separate occasions. During the submaximal test, VO(2)max was predicted using the FM. This device extrapolates the linear regression relating heart rate (HR) and measured VO(2) at submaximal work rates to age-predicted maximum HR (HR = 220 - age). The criterion measure was obtained using a graded, maximal treadmill test, with VO(2) measured by the Douglas bag (DB) method. There was no significant difference between VO(2)max predicted by the FM and VO(2)max measured by the DB method. The results of this study showed that a strong positive correlation (r = 0.897) existed between VO(2)max predicted by the FM and VO(2)max measured by the DB method, with a standard error of the estimate (SEE) = 3.97 ml·kg(-1)·min(-1). There was a significant difference in VO(2)max predicted by the American College of Sports Medicine (ACSM) metabolic equations and VO(2)max measured by the DB method (p = 0.01). The correlation between these variables was r = 0.758 (SEE = 5.26 ml·kg(-1)·min(-1)). These findings indicate that a small, portable, and easy-to-use metabolic system provides valid estimates of VO(2)max, and improves upon predictive accuracy, compared to using generalized ACSM metabolic equations.  相似文献   

2.
The objective of this study was to examine the relationship between the critical velocity (CV) test and maximal oxygen consumption (VO2max) and develop a regression equation to predict VO2max based on the CV test in female collegiate rowers. Thirty-five female (mean ± SD; age, 19.38 ± 1.3 years; height, 170.27 ± 6.07 cm; body mass, 69.58 ± 0.3 1 kg) collegiate rowers performed 2 incremental VO2max tests to volitional exhaustion on a Concept II Model D rowing ergometer to determine VO2max. After a 72-hour rest period, each rower completed 4 time trials at varying distances for the determination of CV and anaerobic rowing capacity (ARC). A positive correlation was observed between CV and absolute VO2max (r = 0.775, p < 0.001) and ARC and absolute VO2max (r = 0.414, p = 0.040). Based on the significant correlation analysis, a linear regression equation was developed to predict the absolute VO2max from CV and ARC (absolute VO2max = 1.579[CV] + 0.008[ARC] - 3.838; standard error of the estimate [SEE] = 0.192 L·min(-1)). Cross validation analyses were performed using an independent sample of 10 rowers. There was no significant difference between the mean predicted VO2max (3.02 L·min(-1)) and the observed VO2max (3.10 L·min(-1)). The constant error, SEE and validity coefficient (r) were 0.076 L·min(-1), 0.144 L·min(-1), and 0.72, respectively. The total error value was 0.155 L·min(-1). The positive relationship between CV, ARC, and VO2max suggests that the CV test may be a practical alternative to measuring the maximal oxygen uptake in the absence of a metabolic cart. Additional studies are needed to validate the regression equation using a larger sample size and different populations (junior- and senior-level female rowers) and to determine the accuracy of the equation in tracking changes after a training intervention.  相似文献   

3.
Maximum oxygen uptake (VO2max) was measured directly and predicted from cardiac frequency measurements in 54 healthy Chilean industrial workers aged 20 to 55 years, together with assessment of their dietary intake, body composition and blood chemistry. Measurement of VO2 was performed on a motor-driven treadmill. The predicted VO2max was obtained using a cycle ergometer by two methods: 1) the Astrand-Ryhming nomogram and 2) the linear relationship between "steady state" heart rate (HR) and submaximum work, with subsequent extrapolation to "maximum" heart rate. Extrapolation of the HR/load regression line to 170 bpm permitted determination of the physical working capacity at 170 bpm (W170). VO2max for the 20-29 year group (Group I) averaged 3624 ml.min-1 and decreased to 3066 ml.min-1 in the 50-55 year group (Group IV). Lower values were obtained using the Astrand-Ryhming nomogram and HR/load regression (-15% and -9% respectively). W170 was also affected by age (Group I: 190.6 W and Group IV: 158.5 W). No significant correlation were found between VO2max and plasma variables, with the exception of cholesterol (r = 0.59). On the contrary, anthropometric variables showed significant correlations with VO2max, which permitted the prediction of VO2max using multiple regression equations. The two best correlations were: 1. VO2max = 0.800 - 0.0225.(A) +0.0189.(W)+1.26.(H) (r = 0.87; p less than 0.001) 2. VO2max = 0.996 - 0.0176.(A) + 0.025.(W) + 0.838.(H) + 0.0255.(LBM) (r = 0.88; p less than 0.001) where A = years of age; W = body weight in kg; H = height in m and LBM = lean body mass in kg.  相似文献   

4.
The purpose of this study was to develop an equation to predict VO2max from a submaximal elliptical cross-trainer test. Fifty-four apparently healthy subjects (25 men and 29 women, mean +/- SD age: 29.5 +/- 7.1 years, height: 173.3 +/- 12.6 cm, weight: 72.3 +/- 7.9 kg, percent body fat: 17.3 +/- 5.0%, and elliptical cross-trainer VO2max: 43.9 +/- 7.2 ml x kg(-1) x min(-1)) participated in the study and were randomly assigned to an original sample group (n = 40) and a cross-validation group (n = 14). Each subject completed an elliptical cross-trainer submaximal (3 5-minute submaximal stages) and a VO2max test on the same day, with a 15-minute rest period in between. Stepwise multiple regression analyses were used to develop an equation for estimating elliptical cross-trainer VO2max from the data of the original sample group. The accuracy of the equation was tested by using data from the cross-validation group. Because there was no shrinkage in R2 between the original sample group and the cross-validation group, data were combined in the final prediction equation (R2 = 0.732, standard error of the estimate = 3.91 ml x kg(-1) x min(-1), p < 0.05): VO2max = 73.676 + 7.383(gender) - 0.317(weight) + 0.003957(age x cadence) - 0.006452(age x heart rate at stage 2). The correlation coefficient between the predicted and measured VO2max values was r = 0.86. Dependent t-tests resulted in no significant differences (p > 0.05) between predicted (43.8 ml x kg(-1) x min(-1)) and measured (43.9 ml x kg(-1) x min(-1)) VO2max measurements. Results indicate that the protocol and equation developed in the current study can be used by exercise professionals to provide acceptably accurate estimates of VO2max in non-laboratory-based settings.  相似文献   

5.
The purpose of this investigation was to crossvalidate 2 equations that use the ratio of maximal heart rate (HRmax) to resting HR (HRrest) for predicting maximal oxygen consumption (VO2max) in white and black men. One hundred and nine white (n = 51) and black (n = 58) men completed a maximal exercise test on a treadmill to determine VO2max. The HRrest and HRmax were used to predict VO2max via the HRindex and HRratio equations. Validity statistics were done to compare the criterion versus predicted VO2max values across the entire cohort and within each race separately. For the entire group, VO2max was significantly overestimated with the HRindex equation, but the HRratio equation yielded no significant difference compared with the criterion. In addition, there were no significant differences shown between VO2max and either HR-based prediction equation for the white subgroup. However, both equations significantly overestimated VO2max in the black group. Furthermore, large standard error of estimates (ranging from 6.92 to 7.90 ml·kg(-1)·min(-1)), total errors (ranging from 8.30 to 8.62 ml·kg(-1)·min(-1)), and limits of agreement (ranging from upper limits of 16.65 to lower limits of -18.25 ml·kg(-1)·min(-1)) were revealed when comparing the predicted to criterion VO2max for both the groups. Considering the results of this investigation, the HRratio and HRindex methods appear to crossvalidate and prove useful for estimating the mean VO2max in white men as a group but not for an age-matched group of black men. However, because of inflated values for error, caution should be exercised when using these methods to predict individual VO2max.  相似文献   

6.
The purpose of this study was to determine whether a test developed to predict maximal oxygen consumption (VO2max) during over-ground walking, was similarly valid as a predictor of peak oxygen consumption (VO2) when administered during a 1-mile (1.61 km) treadmill walk. Treadmill walk time, mean heart rate over the last 2 full min of the walk test, age, and body mass were entered into both generalized (GEN Eq.) and gender-specific (GSP Eq.) prediction equations. Overall results indicated a highly significant linear relationship between observed peak VO2 and GEN Eq. predicted values (r = 0.91), a total error (TE) of 5.26 ml.kg-1.min-1 and no significant difference between observed and predicted peak VO2 mean values. The peak VO2 for women (n = 75) was predicted accurately by GSP Eq. (r = 0.85; TE = 4.5 ml.kg-1.min-1), but was slightly overpredicted by GEN Eq. (overall mean difference = 1.4 ml.kg-1.min-1; r = 0.86; TE = 4.56 ml.kg-1.min-1). No significant differences between observed peak VO2 and either GEN Eq. (r = 0.85; TE = 4.3 ml.kg-1.min-1) or GSP Eq. (r = 0.85; TE = 4.8 ml.kg-1.min-1) predicted values were noted for men (n = 48) with peak VO2 values less than or equal to 55 ml.kg-1.min-1. However, both equations significantly underpredicted peak VO2 for the remaining high peak VO2 men (n = 22). In conclusion, the over-ground walking test, when administered on a treadmill, is a valid method of predicting peak VO2 but underpredicts peak VO2 of subjects with observed high peak VO2 values.  相似文献   

7.
Oxygen consumption and metabolic strain in rowing ergometer exercise   总被引:2,自引:0,他引:2  
Oxygen consumption (VO2) when rowing was determined on a mechanically braked rowing ergometer (RE) with an electronic measuring device. VO2 was measured by an open spirometric system. The pneumotachograph valve was fixed to the sliding seat, thus reducing movement artefacts. A multi-stage test was performed, beginning with a work load of 150 W and increasing by 50 W every 2 minutes up to exhaustion. Serum lactate concentrations were determined in a 30 s break between the work stages. 61 examinations of oarsmen performing at maximum power of 5 W X kg-1 or more were analysed VO2 and heart rate (HR) for each working stage were measured and the regression line of VO2 on the work load (P) and an estimation error (Sxy) were calculated: VO2 = 12.5 X P + 415.2 (ml X min-1) (Sxy = +/- 337 ml, r = 0.98) Good reproducibility was found in repeated examinations. Similar spiroergometry was carried out on a bicycle ergometer (BE) with 10 well trained rowers and 6 trained cyclists. VO2 of rowing was about 600 ml X min-1 higher than for bicycling in the submaximal stages for both groups. The VO2max of RE exercise was 2.6% higher than for oarsmen on BE, and the cyclists reached a greater VO2 on BE than the oarsmen. No differences were found between RE and BE exercise heart rate. The net work efficiency when rowing was 19% for both groups, experienced and inexperienced: when cycling it was 25% for cyclists and 23% for oarsmen.  相似文献   

8.
9.
The reliability and validity of a continuous progressive arm test, in which maximal 02 consumption (V02 max arm) is determined, were analyzed. Forty-one men (28.2 +/- 8.8 yr) performed the test twice. Eighteen additional men (22.6 +/- 5.6 yr) performed the arm test, as well as the treadmill run, in which maximal O2 consumption VO2max leg) was determined. The validity of the VO2 max arm test was computed, using VO2 max leg as a criterion for the individual's aerobic capacity. The reliability coefficients of VO2 max arm, VEmax arm, and HRmax arm were 0.94, 0.98, and 0.76, respectively, indicating a high reliability of the testmthe validity coefficient of VO2max arm was only 0.74. The regression equation of VO2max leg on VO2max arm was y = 24.4 + 0.9 +/- 4.4 (Syx). These findings indicate that, following the suggested protocol, the individual repeatedly uses the same muscles and does reach an all-out stage. However, different individuals apparently are aided by their trunk and leg muscles to different degrees, which lowers the validity of this test as a predictor of aerobic capacity.  相似文献   

10.
Critical power (CP) is a theoretical workload representative of an athlete's maximal sustainable pace. Recent research has validated a 3-minute all-out test on a cycle ergometer for determining CP; however, few studies have investigated the sustainability of CP using this test. The purpose of this study was to determine the sustainability of CP established during the 3-minute test and the determinants of sustainability. A group of elite cyclists (N = 21) performed a VO2max test, 3-minute all-out test, and a time to exhaustion (TTE) trial at CP on 3 different days separated by at least 24 hours. Expired gases were collected during all trials and analyzed for VO2 and VCO2. Heart rate was measured by telemetry. Multiple regression was used to determine predictors of sustainability with significance predetermined at p < 0.05. VO2max was measured at 58.9 ± 5.6 ml·kg(-1)·min(-1), ventilation breakpoint at 44.9 ± 5.7 ml·kg(-1)·min(-1) (75% VO2max), and maximum heart rate at 179 ± 10 b·min(-1). Peak power (PP) in the 3-minute all-out test was measured at 738 ± 170 W, and CP was determined at 305 ± 32 W or 79% of VO2max. The VO2 at CP was 55.4 ± 6.9 ml·kg(-1)·min(-1), representing 94% of measured VO2max. The mean TTE at CP was 14.79 ± 8.38 minutes. The difference score of PP - CP significantly predicted TTE (r = 0.65, p < 0.05). No other measured variables contributed to this prediction. Based on sustainability, these data suggest that the 3-minute all-out test may overestimate CP in elite cyclists, which could lead to overtraining if CP determined with this test is used to identify training intensities.  相似文献   

11.
Role of muscle loss in the age-associated reduction in VO2 max   总被引:6,自引:0,他引:6  
A progressive decline in maximal O2 consumption (VO2max) expressed traditionally as per kilogram body weight generally occurs with advancing age. To investigate the extent to which this decline could be attributable to the age-associated loss of metabolically active tissue, i.e., muscle, we measured 24-h urinary creatinine excretion, an index of muscle mass, in 184 healthy nonobese volunteers, ages 22-87 yr, from the Baltimore Longitudinal Study of Aging who had achieved a true VO2max during graded treadmill exercise. A positive correlation was found between VO2max and creatinine excretion in both men (r = 0.64, P less than 0.001) and women (r = 0.47, P less than 0.001). As anticipated, VO2max showed a strong negative linear relationship with age in both men and women. Creatinine excretion also declined with age in men and women. When VO2max was normalized for creatinine excretion, the variance in the VO2max decline attributable to age declined from 60 to 14% in men and from 50 to 8% in women. Thus comparing the standard age regression of VO2max per kilogram body weight with that in which VO2max is normalized per milligram creatinine excretion, the decline in VO2max between a hypothetical 30 yr old and a 70 yr old was reduced from 39 to 18% in men and from 30 to 14% in women. We conclude that in both sexes, a large portion of the age-associated decline in VO2max in non-endurance-trained individuals is explicable by the loss of muscle mass, which is observed with advancing age.  相似文献   

12.
Ten men and 11 women were studied to determine the effect of experimentally equating haemoglobin concentration ([Hb]) on the sex difference in maximal oxygen uptake (VO2max). VO2max was measured on a cycle ergometer using a continuous, load-incremented protocol. The men were studied under two conditions: 1) with normal [Hb] (153 g X L-1) and 2) two days following withdrawal of blood, which reduced their mean [Hb] to exactly equal the mean of the women (134 g X L-1). Prior to blood withdrawal, VO2max expressed in L X min-1 and relative to body weight and ride time on the cycle ergometer test were greater (p less than .01) in men by 1.11 L X min-1 (47%), 4.8 ml X kg-1 min-1 (11.5%) and 5.9 min (67%), respectively, whereas VO2max expressed relative to fat-free weight (FFW) was not significantly different. Equalizing [Hb] reduced (p less than .01) the mean VO2max of the men by 0.26 L X min-1 (7.5%), 3.2 ml X kg-1 min-1 (6.9%) or 4.1 ml X kg FFW-1 min-1 (7.7%), and ride time by 0.7 min (4.8%). Equalizing [Hb] reduced the sex difference for VO2max less than predicted from proportional changes in the oxygen content of the arterial blood and arteriovenous oxygen content difference during maximal exercise. It was concluded that the sex difference in [Hb] accounts for a significant, but relatively small portion of the sex difference in VO2max (L X min-1). Other factors such as the dimensions of the oxygen transport system and musculature are of greater importance.  相似文献   

13.
The StairMaster 4000 PT is a popular step ergometer which provides a submaximal test protocol (SM Predicted VO(2)max) for the prediction of VO(2)max (ml.kg(-1).min(-1)). The purpose of this study was to evaluate the SM Predicted VO(2)max protocol by comparing it to results from a VO(2)max treadmill test in 20 young healthy women aged 20-25 years. Subjects were 10 step-trained (ST) women who had performed aerobic activities and exercised on a step ergometer for 20-30 minutes at least 3 times per week for the past 3 months, and 10 non-step-trained (NST) women who had performed aerobic activities no more than twice a week during the past 3 months and had no previous experience on a step ergometer. The SM Predicted VO(2)max protocol used 2 steady state heart rates between approximately 115-150 b.min(-1) to estimate VO(2)max. The Bruce maximal treadmill protocol (Actual VO(2)max) was used to measure VO(2)max by open circuit spirometry. Each subject performed both tests within a 7-day period. The means and standard deviations for the Actual VO(2)max tests were 39.8 +/- 6.1 ml.kg(-1).min(-1) for the ST group, 37.6 +/- 6.3 ml.kg(-1).min(-1) for the NST group, and 38.7 +/- 6.2 ml.kg(-1).min(-1) for the Total group (N = 20); and for the SM Predicted VO(2)max tests, means and standard deviations were 40.78 +/- 14.0 ml.kg(-1).min(-1), 30.9 +/- 4.8 ml.kg(-1).min(-1) and 35.9 +/- 11.4 ml.kg(-1).min(-1). There was no significant difference (p > 0.05) between the means of the Actual VO(2)max and SM Predicted VO(2)max test for the Total group (N = 20) or the ST group (n = 10), but a significant difference (p < 0.05) was shown for the NST group. The coefficient of determination (R(2)) and standard error of estimate (SEE) for the SM Predicted VO(2)max and Actual VO(2)max tests were R(2) = 0.18, SEE = 5.72 ml.kg(-1).min(-1) for the Total group; R(2) = 0.00, SEE = 6.68 ml.kg(-1).min(-1) for the NST group; and R(2) = 0.33, SEE = 5.32 ml.kg(-1).min(-1) for ST group. In conclusion, the SM Predicted VO(2)max test has acceptable accuracy for the ST group, but significantly underpredicted the NST group by almost 7 ml; and, as demonstrated by the high SEEs, it has a low level of precision for both ST and NST subjects.  相似文献   

14.
The purpose of this study was to assess the validity of the American College of Sports Medicine's (ACSM's) submaximal treadmill running test in predicting VO2max. Twenty-one moderately well-trained men aged 18-34 years performed 1 maximal treadmill test to determine maximal oxygen uptake (M VO2max) and 2 submaximal treadmill tests using 4 stages of continuous submaximal exercise. Estimated VO2max was predicted by extrapolation to age-predicted maximal heart rate (HRmax) and calculated in 2 ways: using data from all submaximal stages between 110 b·min(-1) and 85% HRmax (P VO2max-All), and using data from the last 2 stages only (P VO2max-2). The measured VO2max was overestimated by 3% on average for the group but was not significantly different to predicted VO2max (1-way analysis of variance [ANOVA] p = 0.695; M VO2max = 53.01 ± 5.38; P VO2max-All = 54.27 ± 7.16; P VO2max-2 = 54.99 ± 7.69 ml·kg(-1)·min(-1)), although M VO2max was not overestimated in all the participants--it was underestimated in 30% of observations. Pearson's correlation, standard error of estimate (SEE), and total error (E) between measured and predicted VO2max were r = 0.646, 4.35, 4.08 ml·kg(-1)·min(-1) (P VO2max-All) and r = 0.642, 4.21, 3.98 ml·kg(-1)·min(-1) (P VO2max-2) indicating that the accuracy in prediction (error) was very similar whether using P VO2max-All or P VO2max-2, with up to 70% of the participants predicted scores within 1 SEE (~4 ml·kg(-1)·min(-1)) of M VO2max. In conclusion, the ACSM equation provides a reasonably good estimation of VO2max with no difference in predictive accuracy between P VO2max-2 and P VO2max-All, and hence, either approach may be equally useful in tracking an individual's aerobic fitness over time. However, if a precise knowledge of VO2max is required, then it is recommended that this be measured directly.  相似文献   

15.
The objective of this study was to estimate the oxygen uptake (&OV0312;O2) in elite youth soccer players using measures of heart rate (HR) and ratings of perceived exertion (RPEs). Forty-six regional-level male youth soccer players (~13 years) participated in 2 VO(2)max tests. Data for HR, RPE, and VO(2) were simultaneously recorded during the VO(2)max tests with incremental running speed. Regression equations were derived from the first VO(2)max test. Two weeks later, all players performed the same VO(2)max test to validate the developed regression equations. There were no significant differences between the estimated values in the first test and actual values in the second test. During the continuous endurance exercise, the combination of percentage of maximal HR (%HRmax) and RPE measures gave similar estimation of %VO(2)max (R = 83%) in comparison to %HRmax alone (R = 81%). However, the estimation of VO(2) using combined %HRmax and RPE was not satisfactory (R = 45-46%). Therefore, the use of %HRmax (without RPE) to estimate %VO(2)max could be a useful tool in young soccer players during field-based continuous endurance testing and training. Specifically, coaches can use the %HRmax to quantify internal loads (%VO(2)max) and subsequently implement continuous endurance training at appropriate intensities. Furthermore, it seems that RPE is more useful as a measure of internal load during noncontinuous (e.g., intermittent and sprint) exercises but not to estimate %VO(2)max during continuous aerobic exercise (R = 59%).  相似文献   

16.
Twenty-eight subjects (6 normal men, 14 distance runners, and 8 rowers) were tested for maximal oxygen uptake (VO2max) and associated physiological measures during bicycle ergometer exercise with toe stirrups while standing (BEts) and during treadmill exercise (TM). Correlation between BEts VO2max and TM VO2max was high (r = 0.901, p less than 0.05). No significant difference existed between the two VO2max values (60.3 +/- 8.9 vs. 60.5 +/- 9.7 ml.kg-1.min-1; n = 28). No differences were found even when three different subgroups were separately compared. It is concluded that the higher VO2max elicited during BEts as compared with normal sitting cycling may be attributed to the increased muscle blood flow and/or involvement of a larger muscle mass, the latter being partly evidenced by the observation of greater electromyographic activity during BEts.  相似文献   

17.
In two experiments maximal aerobic power (VO2max) calculated from maximal mechanical power (Wmax) was evaluated in 39 children aged 9-11 years. A maximal multi-stage cycle ergometer exercise test was used with an increase in work load every 3 min. In the first experiment oxygen consumption was measured in 18 children during each of the prescribed work loads and a correction factor was calculated to estimate VO2max using the equation VO2max = 12.Wmax + 5.weight. An appropriate increase in work rate based on height was determined for boys (0.16 W.cm-1) and girls (0.15 W.cm-1) respectively. In the second experiment 21 children performed a maximal cycle ergometer exercise test twice. In addition to the procedure in the first experiment a similar exercise test was performed, but without measurement of oxygen uptake. Calculated VO2max correlated significantly (p less than 0.01) with those values measured in both boys (r = 0.90) and girls (r = 0.95) respectively, and the standard error of estimation for VO2max (calculated) on VO2max (measured) was less than 3.2%. Two expressions of relative work load (%VO2max and %Wmax) were established and found to be closely correlated. The relative work load in %VO2max could be predicted from the relative work load in %Wmax with an average standard error of 3.8%. The data demonstrate that calculated VO2max based on a maximal multi-stage exercise test provides an accurate and valid estimate of VO2max.  相似文献   

18.
19.
The purposes of this study were firstly to determine the relationship between the peak power output (Wpeak) and maximal oxygen uptake (VO2max) attained during a laboratory cycling test to exhaustion, and secondly to assess the relationship between Wpeak and times in a 20-km cycling trial. One hundred trained cyclists (54 men, 46 women) participated in the first part of this investigation. Each cyclist performed a minimum of one maximal test during which Wmax and VO2max were determined. For the second part of the study 19 cyclists completed a maximal test for the determination of Wpeak, and also a 20-km cycling time trial. Highly significant relationships were obtained between Wpeak and VO2max (r = 0.97, P less than 0.0001) and between Wpeak and 20-km cycle time (r = -0.91, P less than 0.001). Thus, Wpeak explained 94% of the variance in measured VO2max and 82% of the variability in cycle time over 20 km. We concluded that for trained cyclists, the VO2max can be accurately predicted from Wpeak, and that Wpeak is a valid predictor of 20-km cycle time.  相似文献   

20.
The purpose of this investigation was to determine the validity of the non-exercise-based equations of Davis et al. (13), Jones et al. (20), and Neder et al. (30) for estimating the ventilatory threshold (VT) in samples of aerobically trained men and women. One hundred and forty-four aerobically trained men (mean +/- SD age, 41.0 +/- 11.6 years; N = 83) and women (37.1 +/- 9.0 years, N = 61) performed a maximal incremental test to determine VO2max and observed VT on a cycle ergometer. The observed VT was determined by gas exchange measurements using the V-slope method (VCO2/VO2) in conjunction with analyses of the ventilatory equivalents (i.e., minute ventilation VE/VO2 and VE/VCO2) and end-tidal gas tensions (i.e., P(ET)O2 and P(ET)CO2) for oxygen and carbon dioxide. The predicted VT values from 14 equations were compared to the observed VT values by examining the constant error (CE), standard error of estimate (SEE), Pearson correlation coefficient (r), and total error (TE). The results of this investigation indicated that all 14 equations resulted in significant (p < 0.008) CE values ranging from 1.13 to 1.72 L x min(-1) for the men and from 0.58 to 1.12 L x min(-1) for the women. Furthermore, the SEE, r, and TE values ranged from 0.37 to 0.54, from 0.36 to 0.53, and from 0.68 to 1.81 L x min(-1), respectively. The lowest TE values for the men and women represented 45 and 36% of the mean of the observed VT values, respectively. The results of this study indicated that the errors associated with all 14 equations were too large to be of practical value for estimating VT in aerobically trained men and women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号