首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic gene mutation and human disease other than cancer   总被引:6,自引:0,他引:6  
While the focus of much mutation research is on germ-line mutation, somatic mutation is being found to be important in human disease. Neurofibromatosis 1 and McCune-Albright are disorders which are detected in the skin and other systems. The skin manifestations were essential for the demonstration of somatic mosaicism in neurofibromatosis 1, while analysis of blood DNA demonstrated somatic mutation in neurofibromatosis 2. Incontinentia pigmenti is also a disorder seen in skin and other tissues, but here it is the rare variant of the disorder in males, where it is usually lethal, that involves somatic mosaicism. Paroxysmal nocturnal hemoglobinuria is a disorder of the blood and cell separation of blood elements allows the demonstration of the somatic mosaicism. This review also discusses disorders in which somatic mosaicism, for mutations probably incompatible with life if the mutation had been germ-line, are likely to be involved. These include the Proteus syndrome, which involves both vascular tissues and bones, and two disorders which might be thought of as representing two subtypes of Proteus: Klippel-Trenaunay, which involves vascular tissues, and Maffuci, which involves bones. Embryonic mutations, which create mosaicism for both the soma and germ-line, are being increasingly found in a number of disorders and are discussed more briefly. Finally, reverse mutations involving the soma have been recently found in several disorders and such revertant mutations are also examined. While the review focuses on the clinical importance of somatic mutations, many of the mutations found to date are tabulated. It is too early to see if there is a different pattern of somatic mutation as compared to germ-line mutation. Although the parameters to allow careful quantitation are not yet available, it seems that the frequency of gene mutation in embryonic cells is not markedly different than that in the germ-line.  相似文献   

2.
Genetic and clinical mosaicism in a patient with neurofibromatosis type 1   总被引:2,自引:0,他引:2  
Patients with typical features of neurofibromatosis type 1 (NF1) limited to a specific body segment are usually referred to as having segmental NF1, which is generally assumed to be the result of somatic mosaicism for a NF1 mutation. Mosaicism has also been demonstrated at the molecular level in some sporadic cases with phenotypically classic NF1. In the present report, we describe a patient with NF1 disease manifestations throughout the whole body, but leaving a few sharply delineated segments of the skin unaffected, suggestive of revertant mosaicism. A large intragenic deletion was found by mutation analysis using long-range RT-PCR. The intra-exonic breakpoints were characterized in exon 13 and exon 28, resulting in a deletion of 99,571 bp at the genomic level. The presence of two genetically distinct cell populations, confirming mosaicism for this NF1 mutation, was shown by analysis of several tissues. Revertant mosaicism was excluded by demonstrating heterozygosity for markers residing in the deletion region. The findings in this patient demonstrate two things: (1) although the entire body is affected, mosaicism can still be suspected at clinical examination and proven by DNA analysis and skin biopsies; (2) long-range RT-PCR is a feasible method for demonstrating large intragenic deletions in NF1.  相似文献   

3.
Revertant mosaicism by somatic reversion of inherited mutations has been described for a number of genetic diseases. Several mechanisms can underlie this reversion process, such as gene conversion, crossing-over, true back mutation, and second-site mutation. Here, we report the occurrence of multiple corrections in two unrelated probands with revertant mosaicism of non-Herlitz junctional epidermolysis bullosa, an autosomal recessive genodermatosis due to mutations in the COL17A1 gene. Immunofluorescence microscopy and laser dissection microscopy, followed by DNA and RNA analysis, were performed on skin biopsy specimens. In patient 1, a true back mutation, 3781T-->C, was identified in the specimen from the arm, and a second-site mutation, 4463-1G-->A, which compensated for the frameshift caused by the inherited 4424-5insC mutation, was identified in the 3' splice site of exon 55 in a specimen from the middle finger. Patient 2 showed--besides two distinct gene conversion events in specimens from the arm and hand sites, both of which corrected the 1706delA mutation--a second-site mutation (3782G-->C) in an ankle specimen, which prevented the premature ending of the protein by the 3781C-->T nonsense mutation (R1226X). Thus, both inherited mutations, paternal as well as maternal, reverted at least once by different reversion events in distinct cell clusters in the described patients. The occurrence of multiple correcting mutations within the same patient indicates that in vivo reversion is less unusual than was generally thought. Furthermore, in the male patient, mosaic patterns of type XVII collagen-positive keratinocytes were present in clinically unaffected and affected skin. This latter observation makes it likely that reversion may be overlooked and may happen more often than expected.  相似文献   

4.
Revertant mosaicism is an infrequently observed phenomenon caused by spontaneous correction of a pathogenic allele. We have observed such reversions caused by mitotic recombination of mutant TERC (telomerase RNA component) alleles in six patients from four families affected by dyskeratosis congenita (DC). DC is a multisystem disorder characterized by mucocutaneous abnormalities, dystrophic nails, bone-marrow failure, lung fibrosis, liver cirrhosis, and cancer. We identified a 4 nt deletion in TERC in a family with an autosomal-dominant form of DC. In two affected brothers without bone-marrow failure, sequence analysis revealed pronounced overrepresentation of the wild-type allele in blood cells, whereas no such skewing was observed in the other tissues tested. These observations suggest that this mosaic pattern might have resulted from somatic reversion of the mutated allele to the normal allele in blood-forming cells. SNP-microarray analysis on blood DNA from the two brothers indeed showed independent events of acquired segmental isodisomy of chromosome 3q, including TERC, indicating that the reversions must have resulted from mitotic recombination events. Subsequently, after developing a highly sensitive method of detecting mosaic homozygosity, we have found four additional cases with a mosaic-reversion pattern in blood cells; these four cases are part of a cohort of 17 individuals with germline TERC mutations. This shows that revertant mosaicism is a recurrent event in DC. This finding has important implications for improving diagnostic testing and understanding the variable phenotype of DC.  相似文献   

5.
Two contact-inhibited "revertant" cell lines were isolated from an SV40-transformed mouse 3T3 cell line (SV-3T3) after exposure to 5-fluoro-2'-deoxyuridine. Revertant cells resembled 3T3 cells morphologically and grew to saturation densities which were similar to those of 3T3 cells; however, revertant cells readily formed both single and multinucleated giant cells in confluent cultures. SV40 virus was rescued from revertant cells by fusion with permissive monkey cells. The rescued virus transformed 3T3 cells with the same efficiency as wild type virus, and produced transformed colonies which were phenotypically similar to those produced by wild type virus. The revertant cells also resembled normal 3T3 cells in that they contained higher quantities of sialic acid than SV-3T3 cells. An inverse correlation was found between the saturation density of cells and their sialic acid content. Collagen content, however, of revertant cells was similar to that of SV-3T3 cells. The data presented suggest that the property of contact inhibition in revertant cells is related to the sialic acid content of the plasma membrane and that changes in sialic acid content of transformed cells are not directly specified by the viral genome.  相似文献   

6.
7.
A second-step revertant (L1) of a temperature-sensitive mutant (C1) of Newcastle disease virus agglutinated erythrocytes normally but had less than 3% of the wild-type (strain AV) levels of neuraminidase activity. Revertant L1 had seven times more virion-associated N-acetylneuraminic acid (NANA) than strain AV. NANA residues on purified virions were specifically labeled with periodate and tritiated borohydride. Analyses of radiolabeled L1 virions on sodium dodecyl sulfate-polyacrylamide gels showed that most of the virion-associated NANA was in a high-molecular-weight component with an electrophoretic mobility different from that of any known viral protein. NANA was also detected in molecules with the electrophoretic mobility of the viral glycoproteins HN and F1. Revertant L1 had a twofold lower rate constant of attachment to HeLa cells than that of the wild-type. Treatment of L1 virions with Vibrio cholerae neuraminidase removed the excess NANA and returned L1 attachment kinetics to normal. Revertant N1, which has 10-fold more neuraminidase activity than L1, penetrated host cells at the same rate as L1. L1 was impaired in elution from erythrocytes. Removal of virion-associated NANA exacerbated this defect. Despite a small disadvantage in attachment and a major defect in elution relative to strain AV, revertant L1 enjoyed a slight advantage over the wild-type during a single reproductive cycle in cultured chicken embryo cells.  相似文献   

8.
Four patients with features suggestive of chromosome disorders but with normal lymphocyte karyotypes were found to have chromosome aberrations in skin fibroblast karyotypes. Although mosaicism for chromosome abnormalities in lymphocyte cultures is common, apparent restriction of mosaicism to one tissue is unusual. We suggest that after examination of lymphocyte karyotypes, certain patients warrant cytogenetic evaluation of a second tissue, usually cultured skin fibroblasts.  相似文献   

9.
Phenotypic revertants were isolated from simian virus 40-transformed cells in order to examine the relationship between simian virus 40 T-antigen expression and G1 arrest of growth. Revertant clones with increased adherence were selected from cultures of SVT2, a simian virus 40-transformed BALB/c mouse cell line, and screened to find arrestable revertant clones which inhibited DNA synthesis when crowded. The clones selected from untreated SVT2 were unstable and showed little or no inhibition of DNA synthesis when crowded. Stable revertants were found after treatment of SVT2 with Colcemid to increase ploidy. The stable revertants all lost most transformed growth properties tested, including tumorigenicity, but only a few showed the same degree of inhibition of DNA synthesis at high cell density as BALB/3T3. All revertant clones expressed T antigen at low cell density. Three revertants showed coordinate inhibition of DNA synthesis and apparent loss of T antigen at high cell density. We suggest that changes in gene dosage rather than mutations caused the altered properties of the new revertants and that continued DNA synthesis in confluent cultures may be the transformed phenotype that requires the least simian virus 40 T antigen.  相似文献   

10.
The factors influencing the tissue-specific pattern of somatic mosaicism in CAG-repeat diseases have not yet been fully resolved. We performed a detailed analysis of the degree of somatic mosaicism in various tissues from 20 patients with spinal and bulbar muscular atrophy (SBMA), including 4 who were deceased. The most outstanding feature was the prominent somatic mosaicism observed in the cardiac and skeletal muscles, composed predominantly of postmitotic cells, and in the skin, prostate, and testis. The CNS tissues, liver, and spleen showed the least mosaicism. The tissue distribution of somatic mosaicism in patients with SBMA was markedly different from that in patients with Huntington disease (HD) and from that in patients with dentatorubral-pallidoluysian atrophy (DRPLA). The degree of somatic mosaicism correlated with the CAG-repeat number but not with age at examination. Furthermore, tissues with a higher mosaicism level corresponded well to those with a higher expression level of androgen receptor protein. The tissue-specific pattern of somatic mosaicism related not only to cell composition with different cell turnover rates but to repeat size and gene expression levels, and postnatal cell division is unlikely to be a major cause of somatic mosaicism probably because of the relative stability of CAG repeat in SBMA.  相似文献   

11.
The transport of 2-deoxyglucose in BALB/c 3T3 cells, Simian virus 40-transformed BALB/c 3T3 (SVT2) cells, and concanavalin A-selected revertant cells of SVT2 has been measured. Sparsely-seeded BALB/c 3T3 cells transport the sugar at about one-fourth, and sparsely-seeded revertant cells at three-fourths, the rate of SVT2 cells. BALB/c 3T3 cells undergo a dramatic drop in sugar uptake at confluency, transporting sugar at about one-tenth the rate of subconfluent cells. Revertant cells (contact-inhibited variants of transformed cells) are similar in this respect, but the drop is only 5-fold. SVT2 cells show no such change in uptake over wide cell densities. Subconfluent BALB/c 3T3, SVT2, and revertant cells have similar Km and Vmax values for 2-deoxyglucose transport; however, confluent 3T3 and confluent revertant cells show a large increase in Km and a 5-fold decrease in Vmax as compared to their subconfluent counterparts or SVT2 cells—indications of a decreased number of transport sites and a decreased affinity of these sites for sugar when these cells make intimate contacts with each other. These data indicate that extensive changes in the architecture of the cell surface occur when contactinhibited cells are in close apposition with each other, regardless of the persistence of partially expressed SV40 genetic information, and are discussed with regard to the membrane compositions of these cell lines.  相似文献   

12.
Ellis NA  Ciocci S  German J 《Human genetics》2001,108(2):167-173
A unique and constant feature of Bloom syndrome (BS) cells is an excessive rate of sister-chromatid exchange (SCE). However, in approximately 20% of persons with typical BS, mosaicism is observed in which a proportion of lymphocytes (usually a small one) exhibits a low-SCE rate. Persons with such mosaicism predominantly are genetic compounds for mutation at BLM, and the low-SCE lymphocytes are the progeny of a precursor cell in which intragenic recombination between the two sites of BLM mutation had generated a normal allele. Very exceptionally, however, persons with BS who exhibit mosaicism are homozygous for the causative mutation. In two such exceptional homozygous persons studied here, back mutation has been demonstrated: one person constitutionally was homozygous for the mutation 1544insA and the other for the mutation 2702G-->A. Revertant (low-SCE) lymphoblastoid cells in each person were heterozygous for their mutations, i.e., a normal allele was now present. The normal alleles must have arisen by back mutation in a precursor cell, in one person by the deletion of an A base and, in the other, the nucleotide substitution of a G base for an A base. Thus, back mutation now becomes, together with intragenic recombination, an important genetic mechanism to consider when explaining examples of a reversion of somatic cells to "normal" in persons with a genetically determined abnormal phenotype.  相似文献   

13.
Somatic mosaicism for mutations in disease-causing genes has been reported in several recent studies. Examples include hemophilia A, many skin disorders, and several cancers such as retinoblastoma and familial adenomatous polyposis. Many of these disorders require multiple mutations in order to express the disease phenotype. For example, two recessive mutations to the retinoblastoma locus are required to initiate retinoblastomal tumors. I develop a mathematical framework for somatic mosaicism in which two recessive mutations cause disease. With my framework, I analyse the following question: Given an observed frequency of cells with two mutations and an easily scored aberrant phenotype, what is the conditional frequency distribution of cells carrying one mutation and therefore susceptible to transformation by a second mutation? This question is important because a high frequency of carrier cells can cause genetic counselors to misdiagnose a mosaic as an inherited heterozygote carrier and because widespread mosaicism can lead to some germline transmission. As more data accumulate, the observed distribution of mosaics can be compared against my predicted distribution. These sorts of studies will contribute to a broader understanding of the distribution of somatic mutations, a central topic in the study of cancer.  相似文献   

14.
A series of subclones of the H4II line of the Reuber H35 rat hepatoma produce substantial amounts of three plasma proteins, transferrin, alpha 1-antitrypsin and fibrinogen. Immunocytochemical staining demonstrated that each of these proteins is synthesized by essentially every cell of these cell populations. Cells of dedifferentiated variant clones either cease to produce the proteins, or exhibit a substantial reduction that is accompanied by variability in the synthetic activity of individual cells of the population. As previously observed with regard to angiotensinogen production, the variant clones clearly divide into two categories: those that show only a reduction in synthesis are able to give rise to revertants, whereas the negative clones fail to do so. Revertant cells exhibit a dramatic restoration of the synthesis of plasma proteins, which in some cases, exceeds by severalfold the rates seen in the differentiated clones of origin. In addition, the revertant cells synthesize alpha-fetoprotein, a function that is not expressed by H4II cells or its daughter subclones. Immunocytochemical staining revealed that, with regard to several plasma proteins including albumin, fibrinogen and alpha-fetoprotein, the cell populations of revertant clones are very heterogeneous, for only a fraction of the cells synthesizes each protein. Hybrid cells resulting from several types of crosses, exhibited extinction of the plasma proteins, the exception being transferrin, whose production was maintained, but at a reduced level and in only a fraction of the cells. Taken together, our results show that the expression of albumin and transferrin can be dissociated from one to another, and from that of fibrinogen, alpha 1-antitrypsin and angiotensinogen.  相似文献   

15.
Thirty-six strains of Neisseria meningitidis, including groups A, B, and C, produced L forms in vitro in the presence of an osmotic stabilizer and high concentrations of horse serum using penicillin as the transforming agent. Transformation to L growth occurred most readily among strains recently isolated from patients, and an unusually high rate of transformation was observed in 7 of the 36 strains. Revertant L strains developed diplococcal colonies on blood-agar and L colonies on sucrose-serum-penicillin-agar-always in a ratio of approximately 10 to 100 diplococcal colonies to 1 L colony. Using mucin as a host depressant, comparison was made between parent and revertant L strains of their initial pathogenicity and development of virulence by serial mouse passage. In general, revertant L strains showed the same pathogenic characteristics as the parent. Heart blood cultures from mice dying of infection with revertant L strains retained their ability to grow as L forms on penicillin media. Three stable L strains were completely avirulent for mice, although persistence of L forms could be demonstrated in peritoneal exudate for 6 days after inoculation.  相似文献   

16.
Many Duchenne muscular dystrophy (DMD) patients are known to have rare staining dystrophin-positive fibers, termed "revertants." The precise etiology of these rare fibers is unknown. The most likely explanation, however, is somatic mosaicism or somatic reversion/suppression. Immunocytochemistry was performed on serial sections from deleted and nondeleted patients, with a panel of antibodies--9219, 1377, 9218, and Dys-2--that span dystrophin. Both familial and nonfamilial patients possessed revertants. Either the same clusters or individual revertant fibers stained with amino- and carboxyl-terminal antibodies in all 14 DMD patients. In patients with deletions, revertants did not stain with antibodies raised to polypeptide sequences within the deletion. These results indicate that positively staining fibers are not the result of somatic mosaicism in deleted patients. Five of 10 patients without deletions had revertant fibers. In two of these patients, the revertant fibers did not stain with antibody 9218, which was generated against amino acids 2305-2554 and which corresponds to exons 48-52. The remaining antibodies from the panel stained the same fibers on separate serial sections in these two patients. The most likely mechanism giving rise to these positively staining fibers is a second site in-frame deletion. Antibodies generated to polypeptide sequences within deletions can be used to control for the natural occurrence of revertant fibers in myoblast transfer studies and may be useful in the detection of point mutations.  相似文献   

17.
Mosaicism in germ cells has been recognized, over the past few years, as an important and relatively frequent mechanism at the origin of genetic disorders. There are two possibilities for the existence of such a mosaicism: one is that the mutation occurs in a germ cell that continues to divide. The other possibility is that the mutation occurs very early in a somatic cell before the separation to germinal cells and is therefore present both in somatic and germinal cells. Depending on various factors, such as the gene involved and/or the degree of mosaicism, the carrier of a somatic and germline mosaicism may be asymptomatic or may present with various symptoms of the disease. There are still relatively few reports in the literature in which the origin of germ-line mosaicism has been analyzed; nevertheless, they allow for a better insight into the mechanisms involved. In some diseases, such as osteogenesis imperfecta, new mutations are often present as asymptomatic somatic and germline mosaicism in one of the parents of the propositus. In other disorders, such as neurofibromatosis, somatic mosaicism is very rare in the parents of the propositus, perhaps since such mosaicism causes clinical symptoms. These differences are particularly important for genetic counseling in order to evaluate the risk for another affected child after the birth of the propositus. Received: 15 September 1997 / Accepted: 12 January 1998  相似文献   

18.
Although mosaicism can have important implications for genetic counseling of families with hereditary disorders, information regarding the incidence of mosaicism is available for only a few genetic diseases. Here we describe an evaluation of 156 families with retinoblastoma; the initial oncogenic mutation in the retinoblastoma gene had been identified in these families. In 15 ( approximately 10%) families, we were able to document mosaicism for the initial mutation in the retinoblastoma gene, either in the proband or in one of the proband's parents. The true incidence of mosaicism in this group of 156 families is probably higher than our findings indicate; in some additional families beyond the 15 we identified, mosaicism was likely but could not be proven, because somatic or germ-line DNA from key family members was unavailable. Germ-line DNA from two mosaic fathers was analyzed: in one of these, the mutation was detected in both sperm and leukocyte DNA; in the other, the mutation was detected only in sperm DNA. Our data suggest that mosaicism is more common than is generally appreciated, especially in disorders such as retinoblastoma, in which a high proportion of cases represent new mutations. The possibility of mosaicism should always be considered during the genetic counseling of newly identified families with retinoblastoma. As demonstrated here, genetic tests of germ-line DNA can provide valuable information that is not available through analysis of somatic (leukocyte) DNA.  相似文献   

19.
Fs(2)1 is a germ-line dependent dominant female sterile mutation of Drosophila melanogaster. Fs(2)1 heterozygous females deposit very few abnormal eggs (collapsed, with malformed chorion). The degeneration of egg primorida starts around the end of egg maturation. Mitotic recombination mapping locates Fs(2)1 in a distal region of the left arm of the 2nd chromosome. Fs(2)1 is a good tool for studying germ-line functions (by the dominant female sterile technique) because the frequency of germ-line mosaicism exceeds 20% upon irradiation of adult females. Salivary gland polytene chromosomes of Fs(2)1 and the revertant heterozygous larvae appear normal.  相似文献   

20.
Fanconi anemia (FA) is a genetically and phenotypically heterogenous autosomal recessive disease associated with chromosomal instability and hypersensitivity to DNA crosslinkers. Prognosis is poor due to progressive bone marrow failure and increased risk of neoplasia, but revertant mosaicism may improve survival. Mechanisms of reversion include back mutation, intragenic crossover, gene conversion and compensating deletions/insertions. We describe the types of reversions found in five mosaic FA patients who are compound heterozygotes for single base mutations in FANCA or FANCC. Intragenic crossover could be shown as the mechanism of self-correction in the FANCC patient. Restoration to wildtype via back mutation or gene conversion of either the paternal or maternal allele was observed in the FANCA patients. The sequence environments of these mutations/reversions were indicative of high mutability, and selective advantage of bone marrow precursor cells carrying a completely restored FANCA allele might explain the surprisingly uniform pattern of these reversions. We also describe a first example of in vitro phenotypic reversion via the emergence of a compensating missense mutation 15 amino acids downstream of the constitutional mutation, which explains the reversion to MMC resistance of the respective lymphoblastoid cell line. With one exception, our mosaic patients showed improvement of their hematological status during a three- to six-year observation period, indicating a proliferative advantage of the reverted cell lineages. In patients with Fanconi anemia, genetic instability due to defective caretaker genes sharply increases the risk of neoplasia, but at the same time increases the chance for revertant mosaicism leading to improved bone marrow function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号