首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2-amino group of guanine is believed to be a critical determinant of potential DNA binding sites for echinomycin and related quinoxaline antibiotics. In order to probe its importance directly we have studied the interaction between echinomycin and DNA species in which guanine N(2) is deleted by virtue of substitution of inosine for guanosine residues. The polymerase chain reaction was used to prepare inosine-substituted DNA. Binding of echinomycin, assessed by DNAse I footprinting, was practically abolished by incorporation of inosine into one or both strands of DNA. We conclude that both the purines in the preferred CpG binding site need to bear a 2-amino group to interact with echinomycin.  相似文献   

2.
The interaction with DNA of six chemically synthesized derivatives of the quinoxaline antibiotics was investigated. Five of the compounds bound only weakly to DNA or not at all; for these substances spectrophotometric measurements, sedimentation studies with closed circular duplex bacteriophage-PM2 DNA and thermal-denaturation profiles were used to determine limits fot the binding constants. No interaction could be detected with two products of degradation of echinomycin (quinomycin A), one of which, echinomycinic acid dimethyl ester, had the lactone linkages opened, whereas the other retained an intact octapeptide ring but had a broken cross-bridge. The other compounds studied were des-N-tetramethyl-triostin A ('TANDEM') and its derivatives. A derivative of 'TANDEM' IN WHICH benzyloxycarbonyl moieties replace both quinoxaline chromophores had binding constants to nucelic acids in the range 10(2)--10(3)-1, whereas no interaction could be detected for a benzyloxycarbonyl derivative that, in addition, had the cross-bridge broken. The derivative of 'TANDEM' with L-serine in place of D-serine in both positions showed no detectable interaction with Clostridium perfringens DNA, whereas the binding constant to poly(dA-dT) was approx 2 X 10(3)M-1. 'TANDEM' itself bound strongly to DNA, and the bathochromic and hypochromic shifts in its u.v.-absorption spectrum in the presence of DNA were similar to those seen with echinomycin. From the effect on the sedimentation coefficient of closed circular duplex bacteriophage-PM2 DNA the mechanism of binding was shown to involve bifunctional intercalation, typical of the naturally occurring quinoxaline antibiotics. Solvent-partition analysis was used to determine binding constants for the interaction between 'TANDEM' and a variety of natural and synthetic DNA species. The pattern of specificity thus revealed differed markedly from that previously found with the naturally occurring quinoxaline antibiotics. Most striking was the evident large preference for (A + T)-rich DNA species, in complete contrast with echinomycin and triostin A. The highest binding constant was found for poly(dA-dT), the interaction with which appeared highly co-operative in character. The conformations adopted by those quinoxaline compounds that bind strongly to DNA were examined withe aid of molecular models on the basis of results derived from n.m.r. and computer studies. It appears that the observed patterns of base-sequence specificity are determined, at least in part, by the structure and conformation of the sulphur-containing cross-bridge.  相似文献   

3.
Atomic force microscopy (AFM) has been used to examine the conformational effects of echinomycin, a DNA bis-intercalating antibiotic, on linear and circular DNA. Four different 398 bp DNA fragments were synthesized, comprising a combination of normal and/or modified bases including 2,6-diaminopurine and inosine (which are the corresponding analogues of adenine and guanosine in which the 2-amino group that is crucial for echinomycin binding has been added or removed, respectively). Analysis of AFM images provided contour lengths, which were used as a direct measure of bis-intercalation. About 66 echinomycin molecules are able to bind to each fragment, corresponding to a site size of six base-pairs. The presence of base-modified nucleotides affects DNA conformation, as determined by the helical rise per base-pair. At the same time, the values obtained for the dissociation constant correlate with the types of preferred binding site available among the different DNA fragments; echinomycin binds to TpD sites much more tightly than to CpG sites. The structural perturbations induced when echinomycin binds to closed circular duplex pBR322 DNA were also investigated and a method for quantification of the structural changes is presented. In the presence of increasing echinomycin concentration, the plasmid can be seen to proceed through a series of transitions in which its supercoiling decreases, relaxes, and then increases.  相似文献   

4.
5.
6.
The statistical mechanical model for the binding of bifunctional intercalating ligands to duplex DNA described in the preceding paper is applied to the example of echinomycin–DNA interactions. This is the only system for which binding curves have been obtained under conditions leading to binding by both bis-intercalation and mono-intercalation simultaneously. Binding parameters and Scatchard plots are calculated for a variety of conditions. A detailed comparison of these calculations with the results from the previous analysis of the same binding data in terms of the McGhee-Von Hippel theory, assuming only one mode of binding, is presented. The results of our calculations are consistent with the model of bis-intercalation requiring the two bound chromophores of a bifunctional ligand to be separated by two base pairs. It is not necessary to assume violation of the nearest-neighbor exclusion principle, as occurred in the original analysis.  相似文献   

7.
The development of a novel solvent-partition method for measuring the interaction between nucleic acids and drugs of limited water solubility is described. Factors relevant to the choice of a suitable water-immiscible solvent are summarised. i-Amyl acetate was selected for studying the binding of echinomycin and triostin A to DNA. Details of the experimental determination of extinction and partition coefficients are given; in the i-amyl acetate/buffer system employed for most experiments, the partition coefficients for echinomycin and triostin A were 111 +/- 4 and 943 +/- 23, respectively. Equilibration of echinomycin between the organic and aqueous phases was 90% complete within a few minutes, and a period of 2 h shaking was found satisfactory to ensure full attainment of equilibrium. Representative results are presented showing specific binding of the quinoxaline antibiotics to DNA, strong preference for double-helical as opposed to heat-denatured or single-stranded DNA, and restricted uptake by closed circular duplex PM2 DNA. The method is potentially applicable, with appropriate modifications, to the study of interactions between other ligands and DNA.  相似文献   

8.
The reactivity of the 160 bp tyrT DNA fragment towards diethyl pyrocarbonate (DEPC) has been investigated in the presence of bis-intercalating quinoxaline antibiotics and the synthetic depsipeptide TANDEM. At moderate concentrations of each ligand, specific purine residues (mainly adenosines) exhibit enhanced reactivity towards the probe, and several sites of enhancement appear to be related to the sequence selectivity of drug binding. Further experiments were performed with echinomycin at pH 5.5 and 4.6 to facilitate the protonation of cytosine required for formation of Hoogsteen GC base pairs. No significant increase in reactivity was observed under these conditions. Additionally, no protection of deoxyguanosine residues from methylation by dimethyl sulphate was observed in the presence of echinomycin. We conclude that the structural anomaly giving rise to drug-dependent enhanced DEPC reaction is not simply the formation of Hoogsteen base pairs adjacent to antibiotic binding sites. Nor is it due to a general unwinding of the double helix, since we show that conditions which are supposed to unwind the helix lead to a uniform increase in purine reactivity, regardless of the surrounding nucleotide sequence.  相似文献   

9.
10.
Five different DNA fragments have been treated with a range of conformationally sensitive reagents in an effort to probe structural changes in DNA associated with binding of the bis-intercalating antibiotic echinomycin. For each probe, the intensity and pattern of its reactivity with DNA have been analyzed in order to elucidate the effect of antibiotic binding on the accessibility of a specific site or sites to chemical attack. It was found that in one of the DNA fragments, pTyr2 DNA, several purine residues exhibit enhanced reactivity to diethyl pyrocarbonate (DEPC) in the absence of bound antibiotic, and that this strongly sequence specific reaction is enhanced in the presence of quite low echinomycin concentrations. The echinomycin-dependent reactivities towards DEPC of three homologous DNA fragments, chosen for their subtly different antibiotic binding characteristics, were also investigated. It was found that small changes in base sequence generate striking changes in susceptibility to modification by DEPC. The abolition of one antibiotic binding site leads to the creation of a new, intense DEPC-reactive site. In the presence of moderate concentrations of echinomycin, specific thymidine residues exhibit enhanced reactivity towards osmium tetroxide. No differences in the reactivities of the DNA fragments towards bromoacetaldehyde, S1 nuclease, dimethyl sulphate or potassium tetrachloropalladinate were observed in the presence of the antibiotic. DEPC reactions were performed on tubercidin (7-deaza-adenosine) to determine the DEPC reactive positions in situation where N-7 is inaccessible. Tubercidin was found to be generally resistant to attack by DEPC followed by treatment with base. We conclude that the bulk of structural changes induced by the binding of echinomycin to DNA do not involve Hoogsteen base pairing, but rather are due to sequence-specific unwinding of the helix in a manner which is strongly dependent on the nature of surrounding nucleotide sequences.  相似文献   

11.
Two novel antibiotics were isolated, designated compounds 1QN and 2QN respectively, having quinoline rings in place of one or both of the quinoxaline chromophores of echinomycin. Each removes and reverses the supercoiling of closed circular duplex DNA from bacteriophage PM2 in the fashion characteristic of intercalating drugs. For compound 1QN, the unwinding angle at I0.01 is almost twice that of ethidium, whereas for compound 2QN the value is indistinguishable from that of ethidium. Binding of both analogues produced changes in the viscosity of sonicated rod-like DNA fragments corresponding to double the helix extension found with ethidium, a feature characteristic of bifunctional intercalation by quinoxaline antibiotics. These results suggest that both compounds 1QN and 2QN behave as bifunctional intercalators but that compound 2QN produces only half the helix unwinding seen with compound 1QN and the natural quinoxalines. Binding curves for the interaction of both analogues with a variety of synthetic and naturally occurring nucleic acids were determined by solvent-partition analysis. Values for compound 2QN were also obtained by a fluorimetric method and found to agree well with the solvent-partition measurements. Compound 1QN bound most tightly to Micrococcus lysodeikticus DNA and, like echinomycin, exhibited a broad preference for (G + C)-rich DNA species. For compound 2QN no marked (G + C) preference was indicated, and the tightest binding among the natural DNA species studied was found with DNA from Escherichia coli. The two analogues also displayed different patterns of specificity in their interaction with synthetic nucleic acids. Compound 2QN bound to poly(dA-dT) slightly more tightly than to poly-(dG-dC), whereas compound 1QN displayed a large (approx. 11-fold) preference in the opposite sense. There was evidence of co-operativity in the binding to poly(dA-dT). It may be concluded that the chromophore moieties play an active role in determining the capacity of quinomycin antibiotics to recognize and bind selectively to specific sequences in DNA.  相似文献   

12.
One of the truly challenging problems for molecular dynamics (MD) simulations is demonstrating that the trajectories can sample not only in the vicinity of an experimentally determined structure, but also that the trajectories can find the correct experimental structure starting from some other structure. Frequently these transitions to the correct structure require that the simulations overcome energetic barriers to conformational change. Here we present unrestrained molecular dynamics simulations of the DNA analogs of the RNA 5'-GGACUUCGGUCC-3' hairpin tetraloop. In one simulation we have used deoxyuracil residues, and in the other we have used the native DNA deoxythymine residues. We demonstrate that, on a nanosecond time scale, MD is able to simulate the transitions of both of the A-DNA stems to B-DNA stems within the constraints imposed by the four-base loop that caps the helix. These results suggest that we are now in a position to use MD to address the nature of sequence-dependent structural effects in nonduplex DNA structures.  相似文献   

13.
T V Alfredson  A H Maki 《Biochemistry》1990,29(38):9052-9064
Echinomycin complexes with polymeric DNAs and model duplex oligonucleotides have been studied by low-temperature phosphorescence and optical detection of triplet-state magnetic resonance (ODMR) spectroscopy, with the quinoxaline chromophores of the drug used as intrinsic probes. Although not optically resolved, plots of ODMR transition frequencies versus monitored wavelength revealed heterogeneity in the phosphorescence emission of echinomycin, which was ascribed to the presence of two distinct quinoxaline triplet-state environments (referred to as the blue and red triplet states of echinomycin in this report). We think that a likely origin of the two triplet states of echinomycin is the occurrence of two or more distinct conformations of the drug in aqueous solutions. Spectroscopically observed perturbations of the triplet-state properties of echinomycin such as the phosphorescence emission spectrum, phosphorescence lifetime, ODMR spectrum, and zero-field splitting (zfs) energies were investigated upon drug binding to the double-stranded alternating copolymers poly(dG-dC).poly(dG-dC) [abbreviated as poly[d(G-C)2]] and poly(dA-dT).poly(dA-dT) [abbreviated as poly[d(A-T)2]], the homopolymer duplexes poly(dG).poly(dC) [abbreviated as poly(dG.dC)] and poly(dA).poly(dT) [abbreviated as poly(dA.dT)], and the natural DNAs from Escherichia coli, Micrococcus lysodeikticus, and calf thymus. Echinomycin bisintercalation complexes with the self-complementary oligonucleotides d(ACGT), d(CGTACG), and d(ACGTACGT), which are thought to model drug binding sites, were also investigated. Phosphorescence and ODMR spectroscopic results indicate that the quinoxaline chromophores of the drug are involved in aromatic stacking interactions in complexes with the natural DNAs as evidenced by red shifts in the phosphorescence 0,0 band of the drug, a small but significant reduction in the phosphorescence lifetime of the red triplet state, and reduction of the zfs D-value of both the blue and red triplet states upon drug complexation. These changes in the triplet-state properties of echinomycin are consistent with stacking interactions that increase the polarizability of the quinoxaline environment. The extent of the reduction of the D parameter for the red triplet state upon complexation with the polymeric DNAs was found to correlate with the binding affinities measured for these targets [Wakelin, L. P. G., & Waring, M. J. (1976) Biochem. J. 157, 721-740], with the single exception of the drug-poly[d(G-C)2] complex, for which an increase in the D-value was noted. In addition, upon drug binding to the natural DNAs, there is a reversal of signal polarity in the ODMR spectra of the red triplet state. Among the synthetic DNA polymers investigated, a reversal of ODMR signal polarity was found only with the echinomycin-poly[d(A-T)2] complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
X L Gao  D J Patel 《Biochemistry》1988,27(5):1744-1751
We report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets recorded in H2O and D2O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A change in sugar pucker from the C2'-endo range to the C3'-endo range is detected at C2 on formation of the d(ACGT) and d(TCGA) complexes. In addition, the sugar ring protons of C2 exhibit upfield shifts and a large 1 ppm separation between the H2' and H2" protons for both complexes. The L-Ala amide protons undergo large downfield complexation shifts consistent with their participation in intermolecular hydrogen bonds for both tetranucleotide complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Structural and dynamic properties of bovine pancreatic trypsin inhibitor (BPTI) in aqueous solution are investigated using two molecular dynamics (MD) simulations: one of 1.4 ns length and one of 0.8 ns length in which atom-atom distance bounds derived from NMR spectroscopy are included in the potential energy function to make the trajectory satisfy these experimental data more closely. The simulated properties of BPTI are compared with crystal and solution structures of BPTI, and found to be in agreement with the available experimental data. The best agreement with experiment was obtained when atom-atom distance restraints were applied in a time-averaged manner in the simulation. The polypeptide segments found to be most flexible in the MD simulations coincide closely with those showing differences between the crystal and solution structures of BPTI. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The major structural determinant of the preference to bind to CpG binding sites on DNA exhibited by the natural quinoxaline bis-intercalators echinomycin and triostin A, or the quinoline echinomycin derivative, 2QN, is the 2-amino group of guanine (G). However, relocation of this group by means of introduction into the DNA molecule of the 2-aminoadenine (=2,6-diaminopurine, D) base in place of adenine (A) has been shown to lead to a drastic redistribution of binding sites, together with ultratight binding of 2QN to the sequence DTDT. Also, the demethylated triostin analogs, TANDEM and CysMeTANDEM, which bind with high affinity to TpA steps in natural DNA, bind much less tightly to CpI steps, despite the fact that both adenosine and the hypoxanthine-containing nucleoside, inosine (I), provide the same hydrogen bonding possibilities in the minor groove. To study both the increased binding affinity of 2QN for DTDT relative to GCGC sites and the remarkable loss of binding energy between CysMeTANDEM and ICIC compared with ATAT, a series of thermodynamic integration free energy simulations involving conversions between DNA base pairs have been performed. Our results demonstrate that the electrostatic component of the stacking interactions between the heteroaromatic rings of these compounds and the bases that make up the intercalation sites plays a very important role in the modulation of their binding affinities.  相似文献   

17.
Quinomycin C, triostin A and triostin C are peptide antibiotics of the quinoxaline family, of which echinomycin (quinomycin A) is also a member. They all remove and reverse the supercoiling of closed circular duplex DNA from bacteriophage PM2 in the fashion characteristic of intercalating drugs, and the unwinding angle at I 0.01 is, in all cases, almost twice that of ethidium. Thus, as with echinomycin, they can be characterized as bifunctional intercalating agents. For the triostins this conclusion has been confirmed by measurements of changes in the viscosity of sonicated rod-like DNA fragments; the helix extension was found to be almost double that expected for a simple monofunctional intercalation process. For triostin A, further evidence for bifunctionality was derived from the cross-over point of binding isotherms to nicked circular and closed circular bacteriophage-PM2DNA. Binding curves for the interaction of quinomycin C and triostin A with a variety of synthetic and naturally occurring nucleic acids were determined by solvent-partition analysis, but triostin C was too insoluble in aqueous solution to make this method applicable. For quinomycin C the highest binding constant was found with Micrococcus lysodeikticus DNA, and its pattern of specificity among natural DNA species was broadly similar to that of echinomycin, although the binding constants were 2--6 times as large. For triostin A the highest binding constant was again found for M. lysodeikticus DNA, but the specificity pattern was quite different from that of the quinomycins. In particular, triostin A bound better to poly(dA-dT) than to the poly(dG-dC) whereas this order was reversed for quinomycin C. There was also evidence that the binding to poly(dA-dT) might be co-operative in nature. No significant interaction could be detected with poly(dA).poly(dT) or with RNA from Escherichia coli. Poly(dG).poly(dC) gave variable results, depending on the source of the polymer. The different patterns of specificity displayed by the quinomycins and triostins are tentatively ascribed to differences in their conformations in solution.  相似文献   

18.
An actinomycete strain designated as Actinomadura sp. INA 654 was isolated from a chernozem soil sample in the Voronezh Region by the soil sample treatment with millimetric waves (EHF band). The strain produced an antibiotic complex of 2 components, named A-654-I and A-654-II. Investigation of their physico-chemical properties showed that A-654-I was identical to echinomycin, a heteropeptide lactone of the quinoxaline group with antitumor activity, while A-654-II proved to be likely a new natural compound. Production of echinomycin by a representative of the Actinomadura genus was detected for the first time. Up to now, only representatives of the Streptomyces genus were known to produce echinomycin.  相似文献   

19.
The effects of a wide range of DNA binding drugs on peptide nucleic acid (PNA) binding to double-stranded DNA by strand displacement have been investigated using a gel retardation assay. The bis-PNA [H-(Lys)-TTJTTJTTTT-(eg)(3)-TTTTCTTCTT-Lys-NH(2)] was used together with a 248 bp DNA fragment containing an appropriate target for the PNA. Most of the ligands that were studied, including DNA minor groove binders as well as intercalators and bis-intercalators, either have no effect or strongly inhibit PNA binding to DNA. By contrast, quinoxaline antibiotics facilitate PNA-DNA complex formation. The "PNA-helper" effect of echinomycin was studied in more detail using time and temperature dependence experiments to elucidate the mechanism. PNA binding to DNA follows pseudo-first-order kinetics, but the initial rate of binding is accelerated more than 10-fold in the presence of 10 microM echinomycin. The activation energy for PNA binding to dsDNA is lowered 2-fold by the antibiotic (45 vs 90 kJ/mol in the control). The reasons why quinoxalines promote the binding of PNA to DNA are not entirely clear but may well include distortions (opening) of the double helix that facilitate PNA invasion. This study establishes that the efficacy of DNA-targeted PNA antigene molecules could potentially be enhanced by judiciously adding certain DNA-interactive ligands.  相似文献   

20.
The HIV‐1 integrase is an attractive target for the therapeutics development against AIDS, as no host homologue of this protein has been identified. The integrase strand transfer inhibitors (INSTIs), including raltegravir, specifically target the second catalytic step of the integration process by binding to the DDE motif of the catalytic site and coordinating Mg2+ ions. Recent X‐ray crystallographic structures of the integrase/DNA complex from prototype foamy virus allowed to investigate the role of the different partners (integrase, DNA, Mg2+ ions, raltegravir) in the complex stability using molecular dynamics (MD) simulations. The presence of Mg2+ ions is found to be essential for the stability, whereas the simultaneous presence of raltegravir and Mg2+ ions has a destabilizing influence. A homology model of HIV‐1 integrase was built on the basis of the X‐ray crystallographic information, and protein marker residues for the ligand binding were detected by clustering the docking poses of known HIV‐1 integrase inhibitors on the model. Interestingly, we had already identified some of these residues to be involved in HIV‐1 resistance mutations and in the stabilization of the catalytic site during the MD simulations. Classification of protein conformations along MD simulations, as well as of ligand docking poses, was performed by using an original learning method, based on self‐organizing maps. This allows us to perform a more in‐depth investigation of the free‐energy basins populated by the complex in MD simulations on the one hand, and a straightforward classification of ligands according to their binding residues on the other hand. Proteins 2014; 82:466–478. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号