首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The transient receptor potential A1 (TRPA1) channel is the molecular target for environmental irritants and pungent chemicals, such as cinnamaldehyde and mustard oil. Extracellular Ca(2+) is a key regulator of TRPA1 activity, both potentiating and subsequently inactivating it. In this report, we provide evidence that the effect of extracellular Ca(2+) on these processes is indirect and can be entirely attributed to entry through TRPA1 and subsequent elevation of intracellular calcium. Specifically, we found that in a pore mutant of TRPA1, D918A, in which Ca(2+) permeability was greatly reduced, extracellular Ca(2+) produced neither potentiation nor inactivation. Both processes were restored by reducing intracellular Ca(2+) buffering, which allowed intracellular Ca(2+) levels to become elevated upon entry through D918A channels. Application of Ca(2+) to the cytosolic face of excised patches was sufficient to produce both potentiation and inactivation of TRPA1 channels. Moreover, in whole cell recordings, elevation of intracellular Ca(2+) by UV uncaging of 1-(4,5-dimethoxy-2-nitrophenyl)-EDTA-potentiated TRPA1 currents. In addition, our data show that potentiation and inactivation are independent processes. TRPA1 currents could be inactivated by Mg(2+), Ba(2+), and Ca(2+) but potentiated only by Ba(2+) and Ca(2+). Saturating activation by cinnamaldehyde or mustard oil occluded potentiation but did not interfere with inactivation. Last, neither process was affected by mutation of a putative intracellular Ca(2+)-binding EF-hand motif. In conclusion, we have further clarified the mechanisms of potentiation and inactivation of TRPA1 using the D918A pore mutant, an important tool for investigating the contribution of Ca(2+) influx through TRPA1 to nociceptive signaling.  相似文献   

2.
Diabetes mellitus type 2 (DM2) results from the combination of insulin unresponsiveness in target tissues and the failure of pancreatic β cells to secrete enough insulin.1 It is a highly prevalent chronic disease that is aggravated with time, leading to major complications, such as cardiovascular disease and peripheral and ocular neuropathies.2 Interestingly, therapies to improve glucose homeostasis in diabetic patients usually involve the use of glibenclamide, an oral hypoglycemic drug that blocks ATP-sensitive K+ channels (KATP),3,4 forcing β cells to release more insulin to overcome peripheral insulin resistance. However, sulfonylureas are ineffective for long-term treatments and ultimately result in the administration of insulin to control glucose levels.5 The mechanisms underlying β-cell failure to respond effectively with glibenclamide after long-term treatments still needs clarification. A recent study demonstrating that this drug activates TRPA1,6 a member of the Transient Receptor Potential (TRP) family of ion channels and a functional protein in insulin secreting cells,7,8 has highlighted a possible role for TRPA1 as a potential mediator of sulfonylurea-induced toxicity.  相似文献   

3.
Liu  Yangqiu  Wang  Yu  Lou  Yaxin  Tian  Weiping  Que  Kehua 《Journal of molecular histology》2021,52(5):1105-1114

TRPA1 and TRPV1 channels respond to external stimulation as pain mediators and form a complex with a transmembrane protein TMEM100 in some tissues. However, their expression and interaction in dental pulp is unclear. To investigate the functional co-expression of TRPA1 channel, TRPV1 channel and TMEM100 in human odontoblasts (HODs), immunohistochemistry, immunofluorescence staining and Western blot were used to study their co-localization and expression in both native HODs and cultured HOD-like cells. Calcium imaging was used to detect the functional interaction between TRPA1 and TRPV1 channels. Immunohistochemistry and multiple immunofluorescence staining of tooth slices showed positive expression of TRPA1 channel, TRPV1 channel and TMEM100 mainly in the cell bodies of HODs, and TRPA1 channel presented more obvious immunofluorescence in the cell processes than TRPV1 channel and TMEM100. HALO software analysis showed that TRPA1 and TRPV1 channels were positively expressed in most TMEM100+ HODs and these three proteins were strongly correlated in HODs (P < 0.01). The protein expression levels of TRPA1 channel, TRPV1 channel and TMEM100 in HODs showed no significant difference (P?>?0.05). Double immunofluorescence staining of cultured HOD-like cells visually demonstrated that TRPA1 and TRPV1 channel were both highly co-localized with TMEM100 with similar expressive intensity. Calcium imaging showed that there was a functional interaction between TRPA1 and TRPV1 channels in HOD-like cells, and TRPA1 channel might play a greater role in this interaction. Overall, we concluded that TRPA1 channel, TRPV1 channel and TMEM100 could be functionally co-expressed in HODs.

  相似文献   

4.
TRPA1 (transient receptor potential ankyrin 1) is an ion channel expressed in the termini of sensory neurons and is activated in response to a broad array of noxious exogenous and endogenous thiol-reactive compounds, making it a crucial player in chemical nociception. A number of conserved cysteine residues on the N-terminal domain of the channel have been identified as critical for sensing these electrophilic pungent chemicals, and our recent EM structure with modeled domains predicts that these cysteines form a ligand-binding pocket, allowing for the possibility of disulfide bonding between the cysteine residues. Here, we present a comprehensive mass spectrometry investigation of the in vivo disulfide bonding conformation and in vitro reactivity of 30 of the 31 cysteine residues in the TRPA1 ion channel. Four disulfide bonds were detected in the in vivo TRPA1 structure: Cys-666-Cys-622, Cys-666-Cys-463, Cys-622-Cys-609, and Cys-666-Cys-193. All of the cysteines detected were reactive to N-methylmaleimide (NMM) in vitro, with varying degrees of labeling efficiency. Comparison of the ratio of the labeling efficiency at 300 μM versus 2 mM NMM identified a number of cysteine residues that were outliers from the mean labeling ratio, suggesting that protein conformation changes rendered these cysteines either more or less protected from labeling at the higher NMM concentrations. These results indicate that the activation mechanism of TRPA1 may involve N-terminal conformation changes and disulfide bonding between critical cysteine residues.  相似文献   

5.
Recordings of the electric conductivity of a single ionic channel usually exhibit two levels of conductance: a zero and a finite level. The channel may, however, be in a few states which have the same conductivity level, and the distribution of dwell time durations at this conductivity level is thus not monoexponential. It is shown that the joint probability p(tc,to) of the occurrence of a time interval tc during which the channel is not conducting, immediately followed by a time interval to during which the channel is conducting may or may not be equal to the joint probability pr(tc,to) of the occurrence of a non-conducting interval tc preceded by a conducting interval to. If the interconversions between the various states in which the channel can exist obey detailed balance, i.e., if the channel behaves like a system at thermodynamic equilibrium, then p(tc,to) = pr(tc,to). This should help to reveal whether irreversible processes, like metabolic reactions or flows of substances across the membrane, are coupled to the gating process of the ionic channels.  相似文献   

6.
Using single particle electron cryomicroscopy, several helices in the membrane-spanning region of RyR1, including an inner transmembrane helix, a short pore helix, and a helix parallel to the membrane on the cytoplasmic side, have been clearly resolved. Our model places a highly conserved glycine (G4934) at the hinge position of the bent inner helix and two rings of negative charges at the luminal and cytoplasmic mouths of the pore. The kinked inner helix closely resembles the inner helix of the open MthK channel, suggesting that kinking alone does not open RyR1, as proposed for K+ channels.  相似文献   

7.
The calcium release-activated calcium channel (CRAC) is a highly Ca(2+)-selective ion channel that is activated on depletion of inositol triphosphate (IP(3))-sensitive intracellular Ca(2+) stores. It was recently reported that CaT1, a member of the TRP family of cation channels, exhibits the unique biophysical properties of CRAC, which led to the conclusion that CaT1 comprises all or part of the CRAC pore (Yue, L., Peng, J. B., Hediger, M. A., and Clapham, D. E. (2001) Nature 410, 705-709). Here, we directly compare endogenous CRAC with heterologously expressed CaT1 and show that they manifest several clearly distinct properties. CaT1 can be distinguished from CRAC in the following features: sensitivity to store-depleting agents; inward rectification in the absence of divalent cations; relative permeability to Na(+) and Cs(+); effect of 2-aminoethoxydiphenyl borate (2-APB). Moreover, CaT1 displays a mode of voltage-dependent gating that is fully absent in CRAC and originates from the voltage-dependent binding/unbinding of Mg(2+) inside the channel pore. Our results imply that the pores of CaT1 and CRAC are not identical and indicate that CaT1 is a Mg(2+)-gated channel not directly related to CRAC.  相似文献   

8.
The role of mammalian Transient Receptor Potential Ankyrin 1 (TRPA1) as a mechanosensor is controversial. Here, we report that purified human TRPA1 (hTRPA1) with and without its N-terminal ankyrin repeat domain responded with pressure-dependent single-channel current activity when reconstituted into artificial lipid bilayers. The hTRPA1 activity was abolished by the thiol reducing agent TCEP. Thus, depending on its redox state, hTRPA1 is an inherent mechanosensitive ion channel gated by force-from-lipids.  相似文献   

9.
TRPA1 channels are non-selective cation channels activated by plant derived pungent products including allyl isothiocyanate (AITC) from mustard. Therefore, possible intestinal secretory functions of these channels were investigated. We detected TRPA1 mRNA in mouse and human duodenal mucosa and in intestinal mouse neuroendocrine STC-1 cells. Stimulation of STC-1 cells with AITC increased intracellular calcium ([Ca(2+)](i)) and significantly stimulated cholecystokinin secretion by 6.7-fold. AITC induced cholecystokinin release was completely blocked by TRPA1 antagonist ruthenium red and depletion of extracellular calcium and reduced by 36% by nimodipine and nifedipine. This suggests that spices in our daily food might stimulate digestive functions.  相似文献   

10.
Transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is activated by a broad range of noxious stimuli. Cdk5, a member of the Cdk family, has recently been identified as a modulator of pain signaling pathways. In the current study, we investigated the extent to which Cdk5 modulates TRPA1 activity. Cdk5 inhibition was found to attenuate TRPA1 response to agonist in mouse DRG sensory neurons. Additionally, the presence of active Cdk5 was associated with increased TRPA1 phosphorylation in transfected HEK293 cells that was roscovitine-sensitive and absent in the mouse mutant S449A full-length channel. Immunopurified Cdk5 was observed to phosphorylate human TRPA1 peptide substrate at S448A in vitro. Our results point to a role for Cdk5 in modulating TRPA1 activity.  相似文献   

11.
TRPA1 is a member of the transient receptor potential (TRP) cation channel family, and is predominantly expressed in nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. Activation of TRPA1 by environmental irritants such as mustard oil, allicin and acrolein causes acute pain. However, the endogenous ligands that directly activate TRPA1 remain elusive in inflammation. Here, we show that a variety of inflammatory mediators (15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), nitric oxide (NO), hydrogen peroxide (H(2)O(2)), and proton (H(+))) activate human TRPA1 heterologously expressed in HEK cells. These inflammatory mediators induced robust Ca(2+) influx in a subset of mouse DRG neurons. The TRP channel blocker ruthenium red almost completely inhibited neuronal responses by 15d-PGJ(2) and NO, but partially suppressed responses to H(2)O(2) and H(+). Functional characterization of site-directed cysteine mutants of TRPA1 in combination with labeling experiments using biotinylated 15d-PGJ(2) demonstrated that modifications of cytoplasmic N-terminal cysteines (Cys421 and Cys621) were responsible for the activation of TRPA1 by 15d-PGJ(2). In TRPA1 responses to other cysteine-reactive inflammatory mediators, such as NO and H(2)O(2), the extent of impairment by respective cysteine mutations differed from those in TRPA1 responses to 15d-PGJ(2). Interestingly, the Cys421 mutation critically impaired the TRPA1 response to H(+) as well. Our findings suggest that TRPA1 channels are targeted by an array of inflammatory mediators to elicit inflammatory pain in the nervous system.  相似文献   

12.
TRPA1 is a member of the transient receptor potential (TRP) cation channel family, and is predominantly expressed in nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. Activation of TRPA1 by environmental irritants such as mustard oil, allicin, and acrolein causes acute pain. However, the endogenous ligands that directly activate TRPA1 remain elusive in inflammation. Here, we show that a variety of inflammatory mediators (15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), nitric oxide (NO), hydrogen peroxide (H2O2), and proton (H+)) activate human TRPA1 heterologously expressed in HEK cells. These inflammatory mediators induced robust Ca2+ influx in a subset of mouse DRG neurons. The TRP channel blocker ruthenium red almost completely inhibited neuronal responses by 15d-PGJ2 and NO, but partially suppressed responses to H2O2 and H+. Functional characterization of site-directed cysteine mutants of TRPA1 in combination with labeling experiments using biotinylated 15d-PGJ2 demonstrated that modifications of cytoplasmic N-terminal cysteines (Cys421 and Cys621) were responsible for the activation of TRPA1 by 15d-PGJ2. In TRPA1 responses to other cysteine-reactive inflammatory mediators, such as NO and H2O2, the extents of impairment by respective cysteine mutations differed from those in TRPA1 responses to 15d-PGJ2. Interestingly, the Cys421 mutation critically impaired the TRPA1 response to H+ as well. Our findings suggest that TRPA1 channels are targeted by an array of inflammatory mediators to elicit inflammatory pain in the nervous system.  相似文献   

13.
Colicin E1 belongs to a group of bacteriocins whose cytotoxicity toward Escherichia coli is exerted through formation of ion channels that depolarize the cytoplasmic membrane. The lipid dependence of colicin single-channel conductance demonstrated intimate involvement of lipid in the structure of this channel. The colicin formed "small" conductance 60-picosiemens (pS) channels, with properties similar to those previously characterized, in 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (C20) or thinner membranes, whereas it formed a novel "large" conductance 600-pS state in thicker 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22) bilayers. Both channel states were anion-selective and voltage-gated and displayed a requirement for acidic pH. Lipids having negative spontaneous curvature inhibited the formation of both channels but increased the ratio of open 600 pS to 60 pS conductance states. Different diameters of small and large channels, 12 and 16 A, were determined from the dependence of single-channel conductance on the size of nonelectrolyte solute probes. Colicin-induced lipid "flip-flop" and the decrease in anion selectivity of the channel in the presence of negatively charged lipids implied a significant contribution of lipid to the structure of the channel, most readily described as toroidal organization of lipid and protein to form the channel pore.  相似文献   

14.
Potassium channels play a major role in intracellular homeostasis and regulation of cell volume. Intervertebral disc cells respond to mechanical loading in a complex manner. Mechanical loading may play a role in disc degeneration. Lumbar intervertebral disc samples from 5 patients (average age: 47 years, range: 25-64 years) were used for this study, investigating cells from the nucleus pulposus and the annulus fibrosus duplicate samples to determine RNA expression and protein expression. Analysis of mRNA expression by RT-PCR demonstrated that TREK 1 was expressed by nucleus pulposus (n=5) and annulus fibrosus (n=5) cells. Currently, TREK-1 is the only potassium channel known to be activated by intracellular acidosis, and responds to mechanical and chemical stimuli. Whilst the precise role of potassium channels in cellular homeostasis remains to be determined, TREK-1 may be important to protect disc cells against ischaemic damage, and subsequent disc degeneration, and may also play a role in effecting mechanotransduction. Further research is required to fully elucidate the role of the TREK-1 ion channel in intervertebral disc cells.  相似文献   

15.
The pore domain of human voltage-dependent cardiac sodium channel Nav1.5 (hNav1.5) is the crucial binding targets for anti-arrhythmics drugs and some local anesthetic drugs but its three-dimensional structure is still lacking. This has affected the detailed studies of the binding features and mechanism of these drugs. In this paper, we present a structural model for open-state pore domain of hNav1.5 built using single template ROSETTA-membrane homology modeling with the crystal structure of NavMs. The assembled structural models are evaluated by rosettaMP energy and locations of binding sites. The modeled structures of the pore domain of hNav1.5 in open state will be helpful to explore molecular mechanism of a state-dependent drug binding and help designing new drugs.  相似文献   

16.
Nociceptive dorsal root ganglion (DRG) neurons express tetrodotoxin-sensitive (TTX-S) and -resistant (TTX-R) Na(+) current (I(Na)) mediated by voltage-gated Na(+) channels (VGSCs). In nociceptive DRG neurons, VGSC β2 subunits, encoded by Scn2b, selectively regulate TTX-S α subunit mRNA and protein expression, ultimately resulting in changes in pain sensitivity. We hypothesized that VGSCs in nociceptive DRG neurons may also be regulated by β1 subunits, encoded by Scn1b. Scn1b null mice are models of Dravet Syndrome, a severe pediatric encephalopathy. Many physiological effects of Scn1b deletion on CNS neurons have been described. In contrast, little is known about the role of Scn1b in peripheral neurons in vivo. Here we demonstrate that Scn1b null DRG neurons exhibit a depolarizing shift in the voltage dependence of TTX-S I(Na) inactivation, reduced persistent TTX-R I(Na), a prolonged rate of recovery of TTX-R I(Na) from inactivation, and reduced cell surface expression of Na(v)1.9 compared with their WT littermates. Investigation of action potential firing shows that Scn1b null DRG neurons are hyperexcitable compared with WT. Consistent with this, transient outward K(+) current (I(to)) is significantly reduced in null DRG neurons. We conclude that Scn1b regulates the electrical excitability of nociceptive DRG neurons in vivo by modulating both I(Na) and I(K).  相似文献   

17.
Silverman WR  Heginbotham L 《FEBS letters》2007,581(26):5024-5028
Although the cyclic nucleotide-modulated potassium channel from Mesorhizobium loti, MlotiK1, is easily studied using a 86Rb+ flux assay, its comparatively low activity raises serious concerns about the integrity of the purified protein. We investigated the pathway of uptake using a multi-pronged approach. First, we probed the conduction pathway using quaternary ammonium compounds known to block conduction in eukaryotic K+ channels. Second, we examined the effect of chemical modification of putative pore-lining residues. Our results are consistent with ions traversing MlotiK1 along a conduction pathway like that of the eukaryotic channels, but at a much slower rate.  相似文献   

18.
The internal vestibule of large-conductance Ca(2+) voltage-activated K(+) (BK) channels contains a ring of eight negative charges not present in K(+) channels of lower conductance (Glu386 and Glu389 in hSlo) that modulates channel conductance through an electrostatic mechanism (Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. Proc. Natl. Acad. Sci. USA. 100:9017-9022). In BK channels there are also two acidic amino acid residues in an extracellular loop (Asp326 and Glu329 in hSlo). To determine the electrostatic influence of these charges on channel conductance, we expressed wild-type BK channels and mutants E386N/E389N, D326N, E329Q, and D326N/E329Q channels on Xenopus laevis oocytes, and measured the expressed currents under patch clamp. Contribution of E329 to the conductance is negligible and single channel conductance of D326N/E329Q channels measured at 0 mV in symmetrical 110 mM K(+) was 18% lower than the control. Current-voltage curves displayed weak outward rectification for D326N and the double mutant. The conductance differences between the mutants and wild-type BK were caused by an electrostatic effect since they were enhanced at low K(+) (30 mM) and vanished at high K(+) (1 M K(+)). We determine the electrostatic potential change, Deltaphi, caused by the charge neutralization using TEA(+) block for the extracellular charges and Ba(2+) for intracellular charges. We measured 13 +/- 2 mV for Deltaphi at the TEA(+) site when turning off the extracellular charges, and 17 +/- 2 mV for the Deltaphi at the Ba(2+) site when the intracellular charges were turned off. To understand the electrostatic effect of charge neutralizations, we determined Deltaphi using a BK channel molecular model embedded in a lipid bilayer and solving the Poisson-Boltzmann equation. The model explains the experimental results adequately and, in particular, gives an economical explanation to the differential effect on the conductance of the neutralization of charges D326 and E329.  相似文献   

19.
The actions of the nitric oxide (NO) donors 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3 methyl-1-triazine (NOC-7), S-nitrosoacetylcysteine (CySNO) and S-nitrosoglutathione (GSNO) on the purified calcium release channel (ryanodine receptor) of rabbit skeletal muscle were determined by single channel current recordings. In addition, the activation of the NO donor modulated calcium release channel by the sulfhydryl oxidizing organic mercurial compound 4-(chloromercuri)phenylsulfonic acid (4-CMPS) was investigated. NOC-7 (0.1 and 0.3 mM) and CySNO (0.4 and 0.8 mM) increased the open probability (P(o)) of the calcium release channel at activating calcium concentrations (20-100 microM Ca(2+)) by 60-100%, with no effect on the current amplitude; this activation was abolished by the specific sulfhydryl reducing agent DTT. High concentrations of CySNO (1.6-2 mM) decreased P(o). Activation by GSNO (1 mM) was observed in two thirds of the experiments, but 2 mM and 4 mM GSNO markedly reduced P(o) at activating Ca(2+) (20-100 microM). In contrast to 4-CMPS, NOC-7 or GSNO had no effect at subactivating free Ca(2+) (0.6 microM). 4-CMPS further increased the open probability of NOC-7- or CySNO-stimulated channels and reversed transiently the reduced open probability of CySNO or GSNO inhibited channels at activating free Ca(2+). High concentrations of GSNO did not prevent channel activation of 4-CMPS at subactivating free Ca(2+). The NOC-7-, CySNO- or GSNO-modified channels were completely blocked by ruthenium red. It is suggested that nitrosylation/oxidation of sulfhydryls by NO donors and oxidation of sulfhydryls by 4-CMPS affect different cysteine residues essential in the gating of the calcium release channel.  相似文献   

20.
Transient Receptor Potential Ankyrin 1 (TRPA1) is a tetrameric, nonselective cation channel expressed on nociceptive sensory nerves whose activation elicits nocifensive responses (e.g. pain). TRPA1 is activated by electrophiles found in foods and pollution, or produced during inflammation and oxidative stress, via covalent modification of reactive cysteines, but the mechanism underlying electrophilic activation of TRPA1 is poorly understood. Here we studied TRPA1 activation by the irreversible electrophiles iodoacetamide and N-ethylmaleimide (NEM) following transient expression in HEK293 cells. We found that in Ca2+ imaging studies C621 is critical for electrophile-induced TRPA1 activation, but the role of C665 in TRPA1 activation is dependent on the size of the electrophile. We identified slower TRPA1 activation in whole-cell recordings compared to studies with intact cells, which is rescued by pipette solution supplementation with the antioxidant glutathione. Single-channel recordings identified two distinct electrophilic-induced TRPA1 activation phases: a partial activation that, in some channels, switched to full activation with continued electrophile exposure. Full activation but not the initial activation was regulated by C665. Fitting of open time distributions suggests that full activation correlated with an additional (and long) exponential component, thus suggesting the phases are manifestations of distinct activation states. Our results suggest that distinct NEM-induced TRPA1 activation states are evoked by sequential modification of C621 then C665.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号