首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidyltransferase from Clostridium butyricum, which catalyzes transfer of the phosphatidyl moiety of phosphatidylethanolamine (PE), phosphatidylglycerol (PG) or phosphatidylserine to primary alcohols such as glycerol, serine and ethanolamine, was tested for its ability to catalyze transfer of the plasmenyl moiety from plasmalogen analogs of PE or PG to glycerol or ethanolamine, respectively. The cell membrane of C. butyricum contains high proportions of these plasmalogens. When diacyl and plasmalogen forms of PE or PG were supplied as donors in equimolar amounts to membrane particles, the diacyl forms were the preferred donors by approx. 7 and 10 to 1, respectively. When the molar ratio of PE its plasmalogen was 1:3.3, the ratio of PG formed to its plasmalogen was 1:0.66. These results show that the enzyme(s) can catalyze transfer of both the diacyl and alkenyl acyl forms of glycerophospholipids, but the diacyl forms are used preferentially.  相似文献   

2.
Veillonella parvula ATCC 10790, an anaerobic gram-negative coccus, contains diacyl and alk-1-enyl acyl (plasmalogen) forms of phosphatidylethanolamine and phosphatidylserine. We studied the effect of growth temperature on the lipid composition of this strain. There was a small increase in the phosphatidylethanolamine content but no change in the content of plasmalogens at the lower growth temperatures tested. The total acyl chains and the plasmalogen acyl chains contained between 73 and 80% mono-unsaturated fatty acids at all growth temperatures. The plasmalogen alk-1-enyl chains were significantly more unsaturated in cells grown at 30 and 25°C than in cells grown at 37°C. Differential scanning calorimetry of the hydrated phospholipids showed lower phase transition temperatures for the lipids from the cells grown at the lower temperatures. In Megasphaera elsdenii lipids, which are similar in composition to the lipids of V. parvula, the proportion of phosphatidylethanolamine also increased slightly at lower growth temperatures, with no significant change in the content of plasmalogens. M. elsdenii contained cyclopropane fatty acyl and alk-1-enyl chains in addition to the mono-unsaturated and saturated chains previously reported. As cells entered the stationary phase of growth at 30 and 42.5°C, there was a reciprocal increase in the proportion of cyclopropane acyl chains and decrease in the unsaturated moieties. The total proportion of cyclopropane and unsaturated acyl and alk-1-enyl chains was more than 65% at all growth temperatures studied, and there was no discernible increase in the sum of these moieties at the lower growth temperatures.  相似文献   

3.
The phospholipid composition of the butyric acid-producing clostridia is responsive to the degree of enrichment of the lipids with cis-unsaturated fatty acids. When Clostridium butyricum and Clostridium beijerinckii are grown on oleic acid in media devoid of biotin, the acyl and alk-1-enyl chains of the phospholipids become highly enriched with 18:1 and C19-cyclopropane. Under these conditions there is a marked increase in the glycerol acetals of the major plasmalogens of these organisms. We have grown both species on mixtures of palmitate and oleate in the absence of biotin. The alk-1-enyl chains were highly enriched with C18-unsaturated and C19-cyclopropane residues at all but the highest ratios of palmitate to oleate (80:20, w/w) added to the medium. At ratios of palmitate to oleate greater than or equal to 40:60, the saturated acid was incorporated predominantly into the phospholipid acyl chains in both organisms. The effects of increasing unsaturation of the acyl chains as the ratio of oleate to palmitate was increased was examined in C. butyricum. In cells grown on mixtures of palmitate and oleate equal to or exceeding 40% palmitate, the ratio of glycerol acetal lipid to total phosphatidylethanolamine (PE) was relatively constant. As the proportion of oleic acid added to the medium was increased, the ratio of glycerol acetal lipid to PE increased from 0.7 to 2.0. Thus the ratio of the polar lipids appears to respond to the content of phospholipids that contain two unsaturated chains. The fraction of PE present as plasmalogen remained relatively stable (0.82 +/- 0.05) at varying ratios of medium oleic and palmitic acids. Both the glycerol acetal of ethanolamine plasmalogen, and ethanolamine plasmalogen, are shown to be 80% or more in the outer monolayer of the cell membrane. These two polar lipids represent approx. 50% of the phospholipids in cells grown on exogenous fatty acid. The bulk of the remainder is polyglycerol phosphatides. We suggest that the ability of both species to grow with highly unsaturated membranes is related to their ability to modulate their polar lipid composition.  相似文献   

4.
Lipid analyses of the anaerobic bacterium Sphaerophorus ridiculosis revealed that 24.2% of the polar lipids are the alk-1'-enyl glyceryl ether (plasmalogen) form. The major polar lipids, phosphatidylethanolamine (67.5%), phosphatidylglycerol (11.2%), cardiolipin (12.0%), and lyso-phosphatidylethanolamine (9.3%), contained 26.3, 7.8, 5.2, and 13.4% plasmalogen, respectively.  相似文献   

5.
Plasmalogen composition of Anaeroplasma.   总被引:2,自引:1,他引:1       下载免费PDF全文
The polar lipids of Anaeroplasma contained 33.1 percent alk-1'-enyl glyceryl ether (plasmalogen) form. Phosphatidylglycerol was the major polar lipid (55.2 percent) and contained nearly all of the plasmalogen. The alk-1'-enyl glyceryl ether form accounted for 58.3 percent of the phosphatidylglycerol.  相似文献   

6.
We have examined the polar lipids of Clostridium psychrophilum, a recently characterized psychrophilic Clostridium isolated from an Antarctic microbial mat. Lipids were extracted from cells grown near the optimal growth temperature (+ 5 °C) and at − 5 °C, and analyzed by two-dimensional thin layer chromatography and liquid chromatography coupled with mass spectrometry. The major phospholipids of this species are: cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol. Phosphatidylserine and lyso-phosphatidylethanolamine were found as minor components. The most abundant glycolipids are a monoglycosyldiradylglycerol (MGDRG) and a diglycosyldiradylglycerol (DGDRG). The latter was only seen in cells grown at − 5 °C. An ethanolamine-phosphate derivative of N-acetylglucosaminyldiradylglycerol was seen in cells grown at − 5 °C and an ethanolamine-phosphate derivative of MGDRG was found in cells grown at + 5 °C. All lipids were present in both the all acyl and plasmalogen (alk-1′-enyl acyl) forms with the exception of PS and MGDRG, which were predominantly in the diacyl form. The significance of lipid changes at the two growth temperatures is discussed.  相似文献   

7.
Analysis of the polar lipids of many pathogenic and non-pathogenic clostridia has revealed the presence of plasmalogens, alk-1′-enyl ether-containing phospholipids and glycolipids. An exception to this finding so far has been Clostridium difficile, an important human pathogen which is the cause of antibiotic-associated diarrhea and other more serious complications. We have examined the polar lipids of three strains of C. difficile by thin-layer chromatography and have found acid-labile polar lipids indicative of the presence of plasmalogens. The lipids from one of these strains were subjected to further analysis by liquid chromatography coupled to electrospray ionization-mass spectrometry (LC/ESI-MS), which revealed the presence of phosphatidylglycerol, cardiolipin, monohexosyldiradylglycerol, dihexosyldiradylglycerol, and two unusual glycolipids identified as an aminohexosyl-hexosyldiradylglycerol, and a trihexosyldiradylglycerol. High resolution tandem mass spectrometry determined that monohexosyldiradylglycerol, cardiolipin and phosphatidylglycerol contained significant amounts of plasmalogens. C. difficile thus joins the growing list of clostridia that have plasmalogens. Since plasmalogens in clostridia are formed by an anaerobic pathway distinct from those in animal cells, their formation represents a potential novel target for antibiotic action.  相似文献   

8.
The polar lipids of the anaerobic bacterium Clostridium tetani, the causative agent of tetanus, have been examined by two-dimensional thin layer chromatography, ESI mass spectrometry, and NMR spectroscopy. Plasmalogen and di- and tetra-acylated species of phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, and N-acetylglucosaminyl diradylglycerol were the major lipids present in most strains examined except for strain ATCC 10779, the parent of strain E88, the first C. tetani strain to have its genome sequenced. This strain contained the same di- and tetra-acylated species but did not contain plasmalogens. All strains contained a novel derivative of N-acetylglucosaminyl diradylglycerol in which a phosphoethanolamine unit is attached to the 6’-position of the sugar, as judged by selective 31P-decoupled, 1H-detected NMR difference spectroscopy. The N-acetylglucosamine (GlcNAc) residue is presumably linked to the 3-positon of the diradylglycerol moiety, and it has the β-anomeric configuration. Very little plasmalogen component was detected by mass spectrometry in the precursors phosphatidic acid and phosphatidylserine, consistent with the idea that plasmalogens are formed from diacylated phospholipids at a late stage of phospholipid assembly in anaerobic clostridia.  相似文献   

9.
Abstract— Plasmalogenase was assayed by measuring the disappearance of the plasmalogen by two-dimensional thin-layer chromatography. The enzyme was present in a glycerol-bicarbonate extract of an acetone-dried powder from bovine brain. With ethanolamine plasmalogens as the substrate, the Km was 180 μM. Diacyl glycerophosphorylcholines, diacyl glycerophosphorylethanolamines and choline plasmalogens were competitive inhibitors. With choline plasmalogens as the substrate, the Km was 208 μM and competitive inhibition was observed with diacyl glycerophosphorylcholines and ethanolamine plasmalogens. The same enzyme may be responsible for the hydrolysis of the alk-1-enyl moiety from both plasmalogens. Plasmalogenase activity was 5.1 μmol/h/g of dog brain, 3.9 μmol/h/g of rat brain and 3.4 μmol/h/g of gerbil brain. A lysophospholipase was also found in the glycerol-bicarbonate extract from the acetone-dried powder. The lysophospholipase was more active in hydrolysing acyl groups from 2-acyl-sn-glycero-3-phosphorylethanolamines than the plasmalogenase was active in hydrolyzing alk-1-enyl groups from 1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphorylethanolamines.  相似文献   

10.
The principal lipids associated with the electron transport membrane of Haemophilus parainfluenzae are phosphatidylethanolamine (78%), phosphatidylmonomethylethanolamine (0.4%), phosphatidylglycerol (18%), phosphatidylcholine (0.4%), phosphatidylserine (0.4%), phosphatidic acid (0.2%), and cardiolipin (3.0%). Phospholipids account for 98.4% of the extractible fatty acids. There are no glycolipids, plasmalogens, alkyl ethers, or lipo amino acid esters in the membrane lipids. Glycerol phosphate esters derived from the phospholipids by mild alkaline methanolysis were identified by their staining reactions, mobility on paper and ion-exchange column chromatography, and by the molar glycerol to phosphate ratios. Eleven diacyl phospholipids can be separated by two-dimensional thin-layer chromatography. Each lipid served as a substrate for phospholipase D, and had a fatty acid to phosphate ratio of 2:1. Each separated diacyl phospholipid was deacylated and the glycerol phosphate ester was identified by paper chromatography in four solvent systems. Of the 11 separated phospholipids, 3 were phosphatidylethanolamines, 2 were phosphatidylserines, and 2 were phosphatidylglycerols. Phosphatidylcholine, cardiolipin, and phosphatidic acid were found at a single location. Phosphatidylmonomethylethanolamine was found with the major phosphatidylethanolamine. Three distinct classes of phospholipids are separable according to their relative fatty acid compositions. (i) The trace lipids consist of two phosphatidylethanolamines, two phosphatidylserines, phosphatidylcholine, phosphatidic acid, and a phosphatidylglycerol. Each lipid represents less than 0.3% of the total lipid phosphate. These lipids are characterized by high proportions of the short (C(10) to C(14)) and long (C(19) to C(22)) fatty acids with practically no palmitoleic acid. (ii) The major phospholipids (93% of the lipid phosphate) are phosphatidylethanolamine, phosphatidylmonomethylethanolamine, and phosphatidylglycerol. These lipids contain a low proportion of the short (C(19)) fatty acids. Palmitic and palmitoleic acids represent over 80% of the total fatty acids. (iii) The fatty acid composition of the cardiolipin is intermediate between the other two classes. Both palmitoleic and the longer fatty acids represent a significant proportion of the total fatty acid.  相似文献   

11.
Deuterium nuclear magnetic resonance (2H-NMR) was used to investigate the structure and dynamics of the sn-2 hydrocarbon chain of semi-synthetical choline and ethanolamine plasmalogens in bilayers containing 0, 30, and 50 mol% cholesterol. The deuterium NMR spectra of the choline plasmalogen yielded well-resolved quadrupolar splittings which could be assigned to the corresponding hydrocarbon chain deuterons. The sn-2 acyl chain was found to adopt a similar conformation as observed in the corresponding diacyl phospholipid, however, the flexibility at the level of the C-2 methylene segment of the plasmalogen was increased. Deuterium NMR spectra of bilayers composed of the ethanolamine plasmalogen yielded quadrupolar splittings of the C-2 segment much larger than those of the corresponding diacyl lipids, suggesting that the sn-2 chain is oriented perpendicular to the membrane surface at all segments. Cholesterol increased the ordering of the choline plasmalogen acyl chain to the same extent as in diacyl lipid bilayers. T1 relaxation time measurements demonstrated only minor dynamical differences between choline plasmalogen and diacyl lipids in model membranes.  相似文献   

12.
The ethanolamine phosphoglycerides were prepared from lipid extracts of ox and mouse brains by preparative thin-layer chromatography. The cyclic acetal derivatives of the alk-1-enyl groups were made by treating the ethanolamine phosphoglycerides with 1,3-propanediol. The resulting monoacyl glycerophosphoryl ethanolamines were separated from the unchanged ethanolamine phosphoglycerides by preparative thin-layer chromatography. Methyl ester derivatives of the acyl groups from both of these fractions were prepared by alkaline methanolysis. The cyclic acetal and methyl ester derivatives were analyzed by gas-liquid chromatography. Substantial differences were found in the composition of the side chains when the combined alk-1-enyl and acyl side chains of the alk-1'-enyl acyl glycerophosphoryl ethanolamines were compared with the side chains of the diacyl glycerophosphoryl ethanolamines. The side chains from the 1-position of these two ethanolamine phosphoglycerides are different in chain length and unsaturation as well as in chemical bonding. The acyl groups from the 2-position of the alk-1'-enyl acyl glycerophosphoryl ethanolamines were predominantly unsaturated. Therefore, acyl group compositions of the total ethanolamine phosphoglyceride from brain are of limited value and individual types should be analyzed.  相似文献   

13.
The phospholipid composition of Micrococcus denitrificans was unusual in that phosphatidyl choline (PC) was a major phospholipid (30.9%). Other phospholipids were phosphatidyl glycerol (PG, 52.4%), phosphatidyl ethanolamine (PE, 5.8%), an unknown phospholipid (5.3%), cardiolipin (CL, 3.2%), phosphatidyl dimethylethanolamine (PDME, 0.9%), phosphatidyl monomethylethanolamine (PMME, 0.6%), phosphatidyl serine (PS, 0.5%), and phosphatidic acid (0.4%). Kinetics of 32P incorporation suggested that PC was formed by the successive methylations of PE. Pulse-chase experiments with pulses of 32P or acetate-1-14C to exponentially growing cells showed loss of isotopes from PMME, PDME, PS, and CL with biphasic kinetics suggesting the same type of multiple pools of these lipids as proposed in other bacteria. The major phospholipids, PC, PG, and PE, were metabolically stable under these conditions. The fatty acids isolated from the complex lipids were also unusual in being a simple mixture of seven fatty acids with oleic acid representing 86% of the total. Few free fatty acids and no non-extractable fatty acids associated with the cell wall or membrane were found.  相似文献   

14.
Studies of the lipidomes of twenty-one species of clostridia have revealed considerable diversity. Even among those species now defined as Clostridium sensu stricto, which are related to Clostridium butyricum, the type species, lipid analysis has shown that a number of distinct clades have characteristic polar lipids. All species of Clostridium sensu stricto have phosphatidylethanolamine, phosphatidylglycerol and cardiolipin which are present as all acyl or alk-1′-enyl acyl (plasmalogen) species. In addition, almost every clade has specialized polar lipids. For example, the group closely related to Clostridium beijerinckii and several other solventogenic species has glycerol acetals of plasmenylethanolamine, which protects the membrane bilayer arrangement when the lipids are highly unsaturated or in the presence of solvents. The group related to Clostridium novyi has aminoacyl-phosphatidylglycerol, which protects these pathogens from cationic antimicrobial peptides (CAMPs) of innate immunity. Clostridium botulinum species, which fall into several groups, align with these clades, and have the same specific lipids. This review will present the current state of knowledge on clostridial lipids.  相似文献   

15.
Phospholipid metabolism during bacterial growth   总被引:27,自引:0,他引:27  
Haemophilus parainfluenzae incorporates glycerol and phosphate into the membrane phospholipids without lag during logarithmic growth. In phosphatidyl glycerol (PG), the phosphate and unacylated glycerol moieties turn over and incorporate radioactivity much more rapidly than does the diacylated glycerol. At least half the radioactivity is lost from the phosphate and unacylated glycerol in about 1 doubling. The total fatty acids turn over slightly faster than the diacyl glycerol. In phosphatidyl ethanolamine (PE), which is the major lipid of the bacterium, ethanolamine and phosphate turn over and incorporate radioactivity at least half as fast as the phosphate in PG. The glycerol of PE did not turn over in 4 bacterial doublings. In phosphatidic acid the glycerol turns over at one-third the rate of phosphate turnover. By means of a modified method for the quantitative recovery of 1,3-glycerol diphosphate from cardiolipin, the phosphates and middle glycerol of cardiolipin were shown to turn over more rapidly than the acylated glycerols during bacterial growth. There is no randomization of the radioactivity in the 1- and 3-positions of the glycerol in the course of 1 doubling. The fatty acids of PG turn over faster than those in PE. In both lipids the 2-fatty acids turn over much faster than the 1-fatty acids. At both positions the individual fatty acids have their own rates of turnover. The distribution of fatty acids between the 1- and 2-positions is the same as in other organisms, with more monoenoic and long-chain fatty acids at the 2-position. The different rates of turnover and incorporation of radioactivity into different parts of the lipids suggest that exchange reactions may be important to phospholipid metabolism.  相似文献   

16.
Ethanolamine phosphogylcerides (EPG) of human brain gray and white matter were analyzed for their alk-1′-enyl group and fatty acid compositions in sn-glycerol positions 1 and 2. Gray matter contained more 18:0 (54%) and less 18:1 (24.5%) alk-1′-enyl residues than white matter (16% and 57%. Sixty per cent of alk-1′-enyl 18.1 in gray matter was the (n-7), against 71%, in white matter. Both gray and white matter contained small amounts of 18:1 (n-5) and (n-3) isomers. The fatty acids in position I of the phosphatidylethanolamines were more saturated than the corresponding alk-1′-enyl groups of the plasmalogens. The ratios of monoenoic fatty acid isomers in position 1 were markedly different from those of the corresponding alk-1′-enyl groups in gray matter. The fatty acid patterns in position 2 of plasmalogen and phosphatidylethanolamines of white matter were similar except for 22:4(n-6) which was concentrated in the plasmalogen (16% against 10%, in the phosphatidyl ethanolamine). In gray matter, the same trend was noted. The data suggest that alk-1′-enyl residues and the fatty acids in position 1 as well as the fatty acids in position 2 of alk-1′-enyl acyl and diacyl type EPG in both gray and white matter are, at least in part, of different provenance.  相似文献   

17.
Plasmenyl phospholipids (1-alk-1′-enyl-2-acyl-3-glycerophospholipids, plasmalogens) are a structurally unique class of lipids that contain an α-unsaturated ether substituent at the sn-1 position of the glycerol backbone. Several studies have supported the hypothesis that plasmalogens may be antioxidant molecules that protect cells from oxidative stress. Because the molecular mechanisms responsible for the antioxidant properties of plasmenyl phospholipids are not fully understood, the oxidation of plasmalogens in natural mixtures of phospholipids was studied using electrospray tandem mass spectrometry. Glycerophosphoethanolamine (GPE) lipids from bovine brain were found to contain six major molecular species (16:0p/18:1-, 18:1p/18:1-, 18:0p/20:4-, 16:0p/20:4, 18:0a/20:4-, and 18:0a/22:6-GPE). Oxidation of GPE yielded lyso phospholipid products derived from plasmalogen species containing only monounsaturated sn-2 substituents and diacyl-GPE with oxidized polyunsaturated fatty acyl substituents at sn-2. The only plasmalogen species remaining intact following oxidation contained monounsaturated fatty acyl groups esterified at sn-2. The mechanism responsible for the rapid and specific destruction of plasmalogen GPE may likely involve unique reactivity imparted by a polyunsaturated fatty acyl group esterified at sn-2. This structural feature may play a central role determining the antioxidant properties ascribed to this class of phospholipids.  相似文献   

18.
In rabbit platelet membranes, the contents of alkenylacyl phospholipids (plasmalogen) were 56% of phosphatidylethanolamine and 3% of phosphatidylcholine. This uneven distribution of plasmalogens in each phospholipid class could be attributed to the different substrate specificity of ethanolaminephosphotransferase (EC 2.7.8.1) and cholinephosphotransferase (EC 2.7.8.2). The properties of the enzymes were studied, using endogenous diglycerides and CDP-[3H]ethanolamine or CDP-[14C]choline as substrates. The newly formed phospholipids were mainly diacyl and alkenylacyl and only rarely alkylacyl type. The ratios of the labeled alkenylacyl to diacyl type of phospholipids clearly varied with the concentrations of CDP-ethanolamine or CDP-choline. When 1, 10, and 30 microM CDP-[3H]ethanolamine were used, the labeled phospholipids contained 53, 37, and 27% of the alkenylacyl type, respectively. The apparent Km for CDP-ethanolamine to synthesize alkenylacyl and diacyl types were 2.2 and 8.1 microM. On the other hand, when 1, 10, and 30 microM CDP-[14C]choline were used, the labeled lipids contained 10, 17, and 24% alkenylacyl type, respectively. The apparent Km for CDP-choline to synthesize alkenylacyl and diacyl types were 24 and 4.3 microM. Further, the syntheses of diacyl type of phosphatidylethanolamine and the alkenylacyl type of phosphatidylcholine were markedly inhibited by unlabeled CDP-choline and CDP-ethanolamine, respectively. The two enzymes had opposite substrate specificities, and ethanolaminephosphotransferase showed a high preference to plasmalogen synthesis, especially in the presence of CDP-choline.  相似文献   

19.
G K Khuller  H Goldfine 《Biochemistry》1975,14(16):3642-3647
The effect of exogenous unsaturated fatty acids on the acyl and alk-1-enyl group composition of the phospholipids of Clostridium butyricum has been examined. Unsaturated fatty acids support the growth of this organism in the absence of biotin. When cells were grown at 37 degrees in media containing oleate or linoleate and a Casamino acid mixture containing traces of biotin, the exogenous fatty acids were found mainly in the alk-1-enyl chains of the plasmalogens with less pronounced incorporation into the acyl chains. However, at 25 degrees in this medium, both the acyl and alk-1-enyl chains contained substantial amounts of the 18:1 supplement plus the C19-cyclopropane chains derived from it. Ak-1-enyl chains in all the major phosphatide classes showed a uniformly high substitution by the oleate supplement in cells grown at 37 degrees. The oleate and C19-cyclopropane content of the acyl chains was more variable among the phosphatide classes. At 37 degrees, trans-9-octadecenoic acid (elaidic acid) also supported growth and was incorporated into both acyl and alk-1-enyl chains at a high level. When cells were grown on oleate at 37 degrees in media containing biotin-free Casamino acids, both the acyl and alk-1-enyl chains had a high level of 18:1 plus C19-cyclopropane chains. In the cells grown at 37 degrees with oleate substantial changes were seen in the phospholipid class composition. There was a large decrease in the ethanolamine plus N-methylethanolamine plasmalogens with a corresponding increase in the glycerol acetals of these plasmalogens. The glycerol phosphoglycerides were also significantly lower with the appearance of an unknown, relatively nonpolar phospholipid fraction.  相似文献   

20.
Deuterium nuclear magnetic resonance was used to investigate the structure of different lipid fractions isolated from the anaerobic bacteria Clostridium butyricum and Clostridium beijerinckii. The fractions isolated from C. butyricum were (1) phosphatidylethanolamine/plasmenylethanolamine and (2) the glycerol acetal of plasmenylethanolamine, and from C. beijerinckii similar fractions containing principally (1) phosphatidyl-N-monomethylethanolamine, along with its plasmalogen, and (2) the glycerol acetal of this plasmalogen were isolated. The third fraction from both species consisted largely of the acidic lipids phosphatidylglycerol and cardiolipin along with plasmalogen forms of these lipids. Palmitic acid with deuterium labels at C-2, C-3, or C-4 or oleic acid with deuterium labels at C-2 and C-9,10 was added to the growth medium and incorporated to various extents in the lipid fractions. Biochemical analysis showed that palmitic acid and oleic acid were preferentially bound to the sn-2 and sn-1 positions, respectively, of the glycerol backbone when both fatty acids were added to the medium. From the 2H NMR spectra, the hydrocarbon chain ordering near the lipid-water interface could be determined and appeared to be similar for all three lipid fractions. The deuterium quadrupole splitting and order parameter were low at the C-2 segment and increased by almost a factor of 2 at positions C-3 and C-4 for cells fed with deuterated palmitic acid along with unlabeled oleic acid. These results agree with previous findings on pure diacyl lipids in which the sn-2 chain was found to adopt a bent conformation at the carbon segment C-2. However, two unusual quadrupole splittings could be detected for the plasmalogens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号