共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Saunders NF Ng C Raftery M Guilhaus M Goodchild A Cavicchioli R 《Journal of proteome research》2006,5(9):2457-2464
LC-MS/MS was used to identify secreted proteins in the Antarctic archaeon Methanococcoides burtonii. Seven proteins possessing a classical class 1 signal peptide were identified in the supernatant from cultures grown at 4 and 23 degrees C. The proteins included a putative S-layer cell surface protein, cell surface protein involved with cell adhesion, and trypsin-like serine protease. Protease activity was detected in the secreted fraction, and the signal peptide cleavage site of the protease was confirmed using Edman sequencing. The expression profile of putative cell surface proteins suggests a requirement for cell interactions during growth at low temperature. Sequences of the secreted proteins were used to compile a dataset containing a further 32 predicted secreted proteins from the Methanosarcinaceae. Many of these proteins were also S-layer cell surface proteins with a variety of predicted roles, particularly in cell-cell interaction. Computational analysis of signal peptides revealed a preference for lysine in the n-region, leucine in the h-region, and a eucaryal-type cleavage site, highlighting the mosaic nature of signal peptides in Archaea. This is the first study to experimentally characterize secreted proteins from a cold-adapted archaeon and provides new insight and a functional dataset for studying secretion in Archaea. 相似文献
6.
Saunders NF Goodchild A Raftery M Guilhaus M Curmi PM Cavicchioli R 《Journal of proteome research》2005,4(2):464-472
Using liquid chromatography-mass spectrometry, 528 proteins were identified that are expressed during growth at 4 degrees C in the cold adapted archaeon, Methanococcoides burtonii. Of those, 135 were annotated previously as unique or conserved hypothetical proteins. We have performed a comprehensive, integrated analysis of the latter proteins using threading, InterProScan, predicted subcellular localization and visualization of conserved gene context across multiple prokaryotic genomes. Functional information was obtained for 55 proteins, providing new insight into the physiology of M. burtonii. Many of the proteins were predicted to be involved in DNA/RNA binding or modification and cell signaling, suggesting a complex, uncharacterized regulatory network controlling cellular processes during growth at low-temperature. Novel enzymatic functions were predicted for several proteins, including a putative candidate gene for the posttranslational modification of the key methanogenesis enzyme coenzyme M methyl reductase. A bacterial-like CRISPR locus was identified as a strong candidate for archaeal-bacterial lateral gene transfer. Gene context analysis proved a valuable augmentation to the other predictive methods in several cases, by revealing conserved gene associations and annotations in other microbial genomes. Our results underscore the importance of addressing the "hypothetical protein problem" for a complete understanding of cell physiology. 相似文献
7.
Characterization of the biosynthetic pathway of glucosylglycerate in the archaeon Methanococcoides burtonii 下载免费PDF全文
Costa J Empadinhas N Gonçalves L Lamosa P Santos H da Costa MS 《Journal of bacteriology》2006,188(3):1022-1030
The pathway for the synthesis of the organic solute glucosylglycerate (GG) is proposed based on the activities of the recombinant glucosyl-3-phosphoglycerate synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP) from Methanococcoides burtonii. A mannosyl-3-phosphoglycerate phosphatase gene homologue (mpgP) was found in the genome of M. burtonii (http://www.jgi.doe.gov), but an mpgS gene coding for mannosyl-3-phosphoglycerate synthase (MpgS) was absent. The gene upstream of the mpgP homologue encoded a putative glucosyltransferase that was expressed in Escherichia coli. The recombinant product had GpgS activity, catalyzing the synthesis of glucosyl-3-phosphoglycerate (GPG) from GDP-glucose and d-3-phosphoglycerate, with a high substrate specificity. The recombinant MpgP protein dephosphorylated GPG to GG and was also able to dephosphorylate mannosyl-3-phosphoglycerate (MPG) but no other substrate tested. Similar flexibilities in substrate specificity were confirmed in vitro for the MpgPs from Thermus thermophilus, Pyrococcus horikoshii, and "Dehalococcoides ethenogenes." GpgS had maximal activity at 50 degrees C. The maximal activity of GpgP was at 50 degrees C with GPG as the substrate and at 60 degrees C with MPG. Despite the similarity of the sugar donors GDP-glucose and GDP-mannose, the enzymes for the synthesis of GPG or MPG share no amino acid sequence identity, save for short motifs. However, the hydrolysis of GPG and MPG is carried out by phosphatases encoded by homologous genes and capable of using both substrates. To our knowledge, this is the first report of the elucidation of a biosynthetic pathway for glucosylglycerate. 相似文献
8.
The Methanococcoides burtonii small heat shock protein (Mb-sHsp) is an alphaB-crystallin homolog that delivers protein stabilizing and protective functions to model enzymes, presumably reflecting its role as a molecular chaperone in vivo. Although the gene encoding Mb-shsp was cloned from a cold-adapted microorganism, the Mb-sHsp is an efficient protein chaperone at temperatures far above the optimum growth temperature of M. burtonii. We show that Mb-sHsp can prevent aggregation in E. coli cell free extracts at 60 degrees C for 4 h and can stabilize bovine liver glutamate dehydrogenase for 3 h at 50 degrees C. Surface plasmon resonance was used to determine the binding affinity of Mb-sHsp for denatured proteins. Mb-sHsp bound tightly to denatured lysozyme but not to the native form. When Mb-Cpn and Mg(2+)-ATP were added to the reaction, bound lysozyme was released from Mb-sHsp establishing that Mb-Cpn is able to off-load folding intermediates from Mb-sHsp. In addition, Mb-sHsp and Mb-Cpn also function cooperatively to protect an enzyme substrate. Through characterization of these M. burtonii chaperones, we were able to reconstitute a key heat shock regulated protein folding function of this cold adapted organism in vitro. 相似文献
9.
10.
11.
12.
M Bustin 《Nucleic acids research》1978,5(3):925-932
13.
Interchangeability of delta subunits of RNA polymerase from different species of the genus Bacillus. 总被引:2,自引:0,他引:2 下载免费PDF全文
RNA polymerase was purified from five species of Bacillus, including Bacillus subtilis. Each polymerase had a subunit composition analogous to that reported for B. subtilis, i.e., beta beta '2 alpha sigma delta omega 1 omega 2. The delta subunits from the B. subtilis and Bacillus thuringiensis polymerases were interchangeable, as judged from their effects on promoter selection in the polymerase binding assay. 相似文献
14.
15.
16.
17.
Ryuji Fukuda Akira Ishihama Tsunao Saitoh Makoto Taketo 《Molecular & general genetics : MGG》1977,154(2):135-144
Summary The molecular structure of RNA polymerases from Escherichia coli, Salmonella typhimurium, Salmonella anatum, Serratia marcescens, Aerobacter aerogenes, Proteus mirabilis and Bacillus subtilis were compared based on: i) inhibition of the enzyme activity by treatment with antibodies against E. coli RNA polymerase subunits; ii) analysis of antibody precipitates by sodium dodecyl sulfatepolyacrylamide gel electrophoresis; and iii) analysis of antibody precipitates by urea-isoelectrofocusing followed by sodium dodecyl sulfate-slab gel electrophoresis in the second dimension.All the bacterial RNA polymerases examined cross-react equally with anti-E. coli holopolymerase but exhibit different extents of cross-reaction with antibodies against individual subunits. Except for B. subtilis RNA polymerase, the molecular weight and isoelectric point of the enzyme subunits are close to those of E. coli polymerase. However, minor differences were found at least within the resolution of the techniques employed: S. anatum polymerase has subunit larger than E. coli subunit; P. mirabilis enzyme has subunit larger in size and more acidic in charge, and subunit smaller and more basic than corresponding E. coli subunits. The electrophoretic map of B. subtilis enzyme subunits is completely different from that of E. coli enzyme. 相似文献
18.
19.
20.
Bischler N Brino L Carles C Riva M Tschochner H Mallouh V Schultz P 《The EMBO journal》2002,21(15):4136-4144
The spatial distribution of four subunits specifically associated to the yeast DNA-dependent RNA polymerase I (RNA pol I) was studied by electron microscopy. A structural model of the native enzyme was determined by cryo-electron microscopy from isolated molecules and was compared with the atomic structure of RNA pol II Delta 4/7, which lacks the specific polypeptides. The two models were aligned and a difference map revealed four additional protein densities present in RNA pol I, which were characterized by immunolabelling. A protruding protein density named stalk was found to contain the RNA pol I-specific subunits A43 and A14. The docking with the atomic structure showed that the stalk protruded from the structure at the same site as the C-terminal domain (CTD) of the largest subunit of RNA pol II. Subunit A49 was placed on top of the clamp whereas subunit A34.5 bound at the entrance of the DNA binding cleft, where it could contact the downstream DNA. The location of the RNA pol I-specific subunits is correlated with their biological activity. 相似文献