首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Matrix metalloproteinases (MMPs) are involved in inflammatory reaction, including asthma-related airway inflammation. MMP-8, mainly produced by neutrophils, has recently been reported to be increased in the bronchoalveolar lavage fluid (BALF) from asthmatic patients. To evaluate the role of MMP-8 in asthma, we measured MMP-8 expression in lung tissue in an OVA-sensitized mouse model of asthma and addressed the effect of MMP-8 deletion on allergen-induced bronchial inflammation. MMP-8 production was increased in lungs from C57BL/6 mice exposed to allergens. After allergen exposure, MMP-8(-/-) mice developed an airway inflammation characterized by an increased neutrophilic inflammation in BALF and an increased neutrophilic and eosinophilic infiltration in the airway walls. MMP-8 deficiency was associated with increased levels of IL-4 and anti-OVA IgE and IgG1 in BALF and serum, respectively. Although allergen exposure induced an enhancement of LPS-induced CXC chemokine, KC, and MIP-2 levels in BALF and lung parenchyma, no difference was observed between the two genotypes. Inflammatory cell apoptosis was reduced in the lungs from MMP-8(-/-) mice. For the first time, our study evidences an important role of MMP-8 in the control of neutrophilic and eosinophilic infiltration during allergen-induced lung inflammation, and demonstrates that the anti-inflammatory effect of MMP-8 is partly due to a regulation of inflammatory cell apoptosis.  相似文献   

2.
Increased levels of macrophage migration inhibitory factor (MIF) in serum, sputum, and bronchioalveolar lavage fluid (BALF) from asthmatic patients and time/dose-dependent expression of MIF in eosinophils in response to phorbol myristate acetate suggest the participation of MIF in airway inflammation. In this study, we examined inflammation in OVA-sensitized mouse lungs in wild-type and MIF-deficient mice (MIF(-/-)). We report increased MIF in the lung and BALF of sensitized wild-type mice. MIF(-/-) mice demonstrated significant reductions in serum IgE and alveolar inflammatory cell recruitment. Reduced Th1/Th2 cytokines and chemokines also were detected in serum or BALF from MIF(-/-) mice. Importantly, alveolar macrophages and mast cells, but not dendritic cells or splenocytes, from MIF(-/-) mice demonstrated impaired CD4+ T cell activation, and the reconstitution of wild-type mast cells in MIF(-/-) mice restored the phenotype of OVA-induced airway inflammation, revealing a novel and essential role of mast cell-derived MIF in experimentally induced airway allergic diseases.  相似文献   

3.
Allergen challenge in the lung of humans and animals is associated with surfactant dysfunction, but the mechanism of this effect has not been established. By using a murine model of asthma we now report the effect of allergen-induced airway inflammation on the expression of transgenes regulated by the human surfactant protein (hSP)-C promoter. The hSP-C 3.7-kilobase pair promoter was used to direct the expression of eotaxin, an eosinophil-selective chemokine, into the lungs of several transgenic lines. As expected, the transgenic mice expressed increased amounts of eotaxin mRNA and protein compared with wild-type mice. Surprisingly, following allergen challenge, there was a marked down-regulation of transgene mRNA in three independent transgenic lines. The down-regulation was in contrast to other related proteins such as endogenous eotaxin and surfactant protein D levels, which were both increased following allergen challenge. Consistent with specific down-regulation of the eotaxin transgene, there was no increase in pulmonary eosinophil levels in the transgenic mice above that found in wild-type mice. Analysis of hSP-C transgenic mice with distinct reporter genes and 3'-untranslated regions revealed that allergen challenge was directly affecting the hSP-C promoter. We hypothesized that allergen-induced down-regulation of the hSP-C promoter was related to the eosinophilic inflammation. To test this, we blocked eosinophilic inflammation in the lungs by treating mice with neutralizing antiserum against interleukin-5. Interestingly, this treatment also blocked allergen-induced inhibition of the hSP-C promoter. These results establish that allergic airway inflammation is associated with up-regulation of the surfactant proteins primarily involved in immunity, whereas down-regulation of the surfactant protein primarily involved in maintaining airway patency. Furthermore, the marked down-regulation of the hSP-C promoter is interleukin-5-dependent, implying a critical role for eosinophilic inflammation. These results suggest that alterations in surfactant protein levels may contribute to immune and airway dysfunction in asthma.  相似文献   

4.
Levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are increased in lung, sputum, exhaled breath condensate and plasma samples from asthma patients. ADMA is metabolized primarily by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2. We determined the effect of DDAH1 overexpression on development of allergic inflammation in a mouse model of asthma. The expression of DDAH1 and DDAH2 in mouse lungs was determined by RT-quantitative PCR (qPCR). ADMA levels in bronchoalveolar lavage fluid (BALF) and serum samples were determined by mass spectrometry. Wild type and DDAH1-transgenic mice were intratracheally challenged with PBS or house dust mite (HDM). Airway inflammation was assessed by bronchoalveolar lavage (BAL) total and differential cell counts. The levels of IgE and IgG1 in BALF and serum samples were determined by ELISA. Gene expression in lungs was determined by RNA-Seq and RT-qPCR. Our data showed that the expression of DDAH1 and DDAH2 was decreased in the lungs of mice following HDM exposure, which correlated with increased ADMA levels in BALF and serum. Transgenic overexpression of DDAH1 resulted in decreased BAL total cell and eosinophil numbers following HDM exposure. Total IgE levels in BALF and serum were decreased in HDM-exposed DDAH1-transgenic mice compared to HDM-exposed wild type mice. RNA-Seq results showed downregulation of genes in the inducible nitric oxide synthase (iNOS) signaling pathway in PBS-treated DDAH1-transgenic mice versus PBS-treated wild type mice and downregulation of genes in IL-13/FOXA2 signaling pathway in HDM-treated DDAH1-transgenic mice versus HDM-treated wild type mice. Our findings suggest that decreased expression of DDAH1 and DDAH2 in the lungs may contribute to allergic asthma and overexpression of DDAH1 attenuates allergen-induced airway inflammation through modulation of Th2 responses.  相似文献   

5.
Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/-) mice as a model. Following local delivery of LPS or zymosan, no significant difference was found in the recruitment of neutrophils to the lung between Hpa-/- and wild type (WT) control. Similarly neutrophil recruitment was not inhibited in WT mice treated with a heparanase inhibitor. However, in allergic inflammatory models, Hpa-/- mice displayed a significantly reduced eosinophil (but not neutrophil) recruitment to the airways and this was also associated with a reduction in allergen-induced bronchial hyperresponsiveness, indicating that heparanase expression is associated with allergic reactions. This was further demonstrated by pharmacological treatment with a heparanase inhibitor in the WT allergic mice. Examination of lung specimens from patients with different severity of chronic obstructive pulmonary disease (COPD) found increased heparanase expression. Thus, it is established that heparanase contributes to allergen-induced eosinophil recruitment to the lung and could provide a novel therapeutic target for the development of anti-inflammatory drugs for the treatment of asthma and other allergic diseases.  相似文献   

6.

Background

Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.

Methods

THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.

Results

Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs.

Conclusions

These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.  相似文献   

7.
Activation of the adenosine A(2A) receptor has been postulated as a possible treatment for lung inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). In this report, we have studied the anti-inflammatory properties of the reference A(2A) agonist CGS-21680, given intranasally at doses of 10 and 100 microg/kg, in a variety of murine models of asthma and COPD. After an acute ovalbumin challenge of sensitized mice, prophylactic administration of CGS-21680 inhibited the bronchoalveolar lavage fluid inflammatory cell influx but not the airway hyperreactivity to aerosolized methacholine. After repeated ovalbumin challenges, CGS-21680 given therapeutically inhibited the bronchoalveolar lavage fluid inflammatory cell influx but had no effect on the allergen-induced bronchoconstriction, the airway hyperreactivity, or the bronchoalveolar lavage fluid mucin levels. As a comparator, budesonide given intranasally at doses of 0.1-1 mg/kg fully inhibited all the parameters measured in the latter model. In a lipopolysaccharide-driven model, CGS-21680 had no effect on the bronchoalveolar lavage fluid inflammatory cell influx or TNF-alpha, keratinocyte chemoattractant, and macrophage inflammatory protein-2 levels, but potently inhibited neutrophil activation, as measured by bronchoalveolar lavage fluid elastase levels. With the use of a cigarette smoke model of lung inflammation, CGS-21680 did not significantly inhibit bronchoalveolar lavage fluid neutrophil infiltration but reversed the cigarette smoke-induced decrease in macrophage number. Together, these results suggest that activation of the A(2A) receptor would have a beneficial effect by inhibiting inflammatory cell influx and downregulating inflammatory cell activation in asthma and COPD, respectively.  相似文献   

8.
Allergic asthma is characterized by airway inflammation initiated by adaptive immune responses to aeroallergens. Recent data suggest that severe asthma may be a different form of asthma rather than an increase in asthma symptoms and that innate immune responses to LPS can modulate adaptive immune responses to allergens. In this study, we evaluated the hypothesis that airway exposure to different doses of LPS induces different form of asthma. Our study showed that neutrophilic inflammation and IFN-gamma expression were higher in induced sputum from severe asthma patients than from mild to moderate asthmatics. Animal experiments indicated that allergen sensitization with low-dose LPS (0.1 microg) induced type 2 asthma phenotypes, i.e., airway hyperresponsiveness, eosinophilic inflammation, and allergen-specific IgE up-regulation. In contrast, allergen sensitization with high-dose LPS (10 microg) induced asthma phenotypes, i.e., airway hyperresponsiveness and noneosinophilic inflammation that were not developed in IFN-gamma-deficient mice, but unaffected in the absence of IL-4. During the allergen sensitization period, TNF-alpha expression was found to be enhanced by both low- and high-dose LPS, whereas IL-12 expression was only enhanced by high-dose LPS. Interestingly, the asthma phenotypes induced by low-dose LPS, but not by high-dose LPS, were completely inhibited in TNF-alpha receptor-deficient mice, whereas the asthma phenotypes induced by high-dose LPS were abolished in the homozygous null mutation of the STAT4 gene. These findings suggest that airway exposure levels of LPS induces different forms of asthma that are type 1 and type 2 asthma phenotypes by high and low LPS levels, respectively.  相似文献   

9.

Background

Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against Streptococcus pneumoniae (pneumococcal) pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria.

Methods

To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days.

Results

We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response was primarily neutrophilic. The presence of allergic inflammation did not significantly alter the neutrophilic response to the lysate, and did not affect the induced bacterial killing within the lungs.

Conclusion

These results suggest that allergic airway inflammation neither promotes nor inhibits progression of pneumococcal lung infection in mice, nor does it influence the successful induction of stimulated innate resistance to bacteria.  相似文献   

10.
The elevated S100A4 level has been found in some inflammatory diseases. However, the expression and role of S100A4 in asthma is unknown. The expression of S100A4 in induced sputum and plasma from healthy control and asthmatics were assessed by ELISA. Then an allergen-induced asthma mouse model treatment with anti-S100A4 antibody was used to explore the role of S100A4 in the pathogenesis of asthma. The S100A4 levels in sputum not in plasma in asthmatics were significantly increased than those of healthy controls and were negatively correlated with some lung function parameters and were positively correlated with sputum eosinophilia and lymphocyte. The expression of S100A4 in the lung as well as in BALF were also significantly higher in the asthma mouse model and treatment with anti-S100A4 antibody exhibited reductions in inflammatory cell accumulation, inflammatory mediators, and airway hyper-responsiveness. We further showed that LY294002, a specific inhibitor of PI3K, markedly decreased S100A4 expression in lung and S100A4 secretion in BALF in asthmatic mice. In conclusion, these data demonstrated that S100A4 may be involved in the pathogenesis of airway inflammation in asthma.  相似文献   

11.
AIM: To determine induced sputum cell counts and interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-alpha) and leukotriene B4 (LTB4) levels as markers of neutrophilic inflammation in moderate persistent asthma, and to evaluate the response to inhaled steroid therapy. METHODS: Forty-five moderate asthmatic patients and 10 non-smoker controls were included in this study. All patients received inhaled corticosteroid (800 microg of budesonide) for 12 weeks. Before and after treatment pulmonary function tests were performed, and symptom scores were determined. Blood was drawn for analysis of serum inflammatory markers, and sputum was induced. RESULTS: Induced sputum cell counts and inflammatory markers were significantly higher in patients with asthma than in the control group. The induced sputum eosinophil counts of 12 patients (26%) were found to be less than 5%, the non-eosinophilic group, and sputum neutrophil counts, IL-8 and TNF-alpha levels were significantly higher than the eosinophilic group (neutrophil, 50+/-14% versus 19+/-10%, p<0.01). In both groups, there was a significant decrease in sputum total cell counts and serum and sputum IL-8, TNF-alpha and LTB4 levels after the treatment. There was no change in sputum neutrophil counts. Although the sputum eosinophil count decreased only in the eosinophilic subjects, there was no significant difference in inflammatory markers between the groups. The symptom scores were significantly improved after treatment, while the improvement did not reach statistical significance on pulmonary function test parameters. CONCLUSION: Notably, in chronic asthma there is a subgroup of patients whose predominant inflammatory cells are not eosinophils. Sputum neutrophil counts and neutrophilic inflammatory markers are significantly higher in these patients. In the non-eosinophilic group, inhaled steroid caused an important decrease in inflammatory markers; however, there was no change in the sputum eosinophil and neutrophil counts.  相似文献   

12.
A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12-15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.  相似文献   

13.
Airway eosinophilic inflammation is a characteristic feature of allergic asthma. Exposure to allergens produced by the German cockroach (Blattella germanica) is a risk factor for allergic disease in genetically predisposed individuals, and has been linked to an increase in asthma morbidity among cockroach-sensitive inner city children. To determine the role and contribution of specific HLA class II in the pathogenesis of allergic airway inflammation in cockroach-induced asthma, we generated double-transgenic, double-knockout mice expressing human HLA-DQ8, HLA-DQ6, and CD4 molecules in the absence of mouse class II and mouse CD4. Mice were actively immunized and later challenged intranasally with cockroach allergen extract. These mice developed bronchoalveolar lavage fluid (BALF) eosinophilia and pulmonary eosinophilia. This was accompanied by an increase in total protein levels, IL-5, and IL-13 in BALF. There were also elevated levels of cockroach-specific serum IgG1 and total serum IgE. Histological analysis revealed peribronchial and perivascular eosinophilic inflammation in cockroach-treated mice. Other pathologic changes in the airways were epithelial cell hypertrophy and mucus production. Treatment with anti-DQ mAb significantly reduced pulmonary and BALF eosinophilia in cockroach allergen-sensitized mice. Abeta(0) mice and transgenic mice expressing human CD4 molecule alone (without class II) or human HLA-DQ8 molecule (without CD4) treated in the same fashion showed no eosinophilia in bronchoalveolar fluid and no pulmonary parenchymal inflammation. Our results provide direct evidence that HLA-DQ molecules and CD4 T cells mediate cockroach-induced eosinophilic inflammation in the airways.  相似文献   

14.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

15.
The development and treatment of asthma remains a subject of considerable interest in the medical community. Previous studies implicate an important role of cytokines in the pathology of asthma. In this current study, we examined whether redox-active protein thioredoxin 1 (TRX1) could prevent airway remodeling in an ovalbumin (OVA)-driven mouse chronic antigen exposure asthma model. Balb/c mice were sensitized and then challenged nine times with OVA (days 19-45). In this protocol, airway remodeling was established by day 34. Administration of recombinant human TRX1 during antigen challenge (days 18-32) significantly inhibited airway remodeling, eosinophilic pulmonary inflammation, airway hyperresponsiveness and resulted in decreased lung expression of eotaxin, macrophage inflammatory protein-1alpha and IL-13. Airway remodeling and eosinophilic pulmonary inflammation was also prevented in chronic OVA-exposed Balb/c human TRX1 transgenic mice. Importantly, TRX1-administration, after the establishment of airway remodeling (days 35-45), resulted in improved airway pathology. Our results suggest TRX1 prevents the development of airway remodeling, and also improves established airway remodeling by inhibiting production of chemokines and Th2 cytokines in the lungs.  相似文献   

16.

Introduction

Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine associated with acute and chronic inflammatory disorders and corticosteroid insensitivity. Its expression in the airways of patients with chronic obstructive pulmonary disease (COPD), a relatively steroid insensitive inflammatory disease is unclear, however.

Methods

Sputum, bronchoalveolar lavage (BAL) macrophages and serum were obtained from non-smokers, smokers and COPD patients. To mimic oxidative stress-induced COPD, mice were exposed to ozone for six-weeks and treated with ISO-1, a MIF inhibitor, and/or dexamethasone before each exposure. BAL fluid and lung tissue were collected after the final exposure. Airway hyperresponsiveness (AHR) and lung function were measured using whole body plethysmography. HIF-1α binding to the Mif promoter was determined by Chromatin Immunoprecipitation assays.

Results

MIF levels in sputum and BAL macrophages from COPD patients were higher than those from non-smokers, with healthy smokers having intermediate levels. MIF expression correlated with that of HIF-1α in all patients groups and in ozone-exposed mice. BAL cell counts, cytokine mRNA and protein expression in lungs and BAL, including MIF, were elevated in ozone-exposed mice and had increased AHR. Dexamethasone had no effect on these parameters in the mouse but ISO-1 attenuated cell recruitment, cytokine release and AHR.

Conclusion

MIF and HIF-1α levels are elevated in COPD BAL macrophages and inhibition of MIF function blocks corticosteroid-insensitive lung inflammation and AHR. Inhibition of MIF may provide a novel anti-inflammatory approach in COPD.  相似文献   

17.
Airway inflammation is a characteristic of many lung disorders, including asthma and chronic obstructive pulmonary disease. Using a murine model of allergen-induced asthma, we have demonstrated that adenovirus-mediated delivery of the nuclear factor-kappaB (NF-kappaB) inhibitory protein ABIN-1 to the lung epithelium results in a considerable reduction of allergen-induced eosinophil infiltration into the lungs. This is associated with an ABIN-1-induced decrease in allergen-specific immunoglobulin E levels in serum, as well as a significant reduction of eotaxin, interleukin-4, and interleukin-1beta in bronchoalveolar lavage fluid. These findings not only prove that NF-kappaB plays a critical role in the pathogenesis of allergic inflammation but also illustrate that inhibiting NF-kappaB could have therapeutic value in the treatment of asthma and potentially other chronic inflammatory lung diseases.  相似文献   

18.
A commonly used mouse model of asthma is based on i.p. sensitization to OVA together with aluminum hydroxide (alum). In wild-type BALB/c mice, subsequent aerosol challenge using this protein generates an eosinophilic inflammation associated with Th2 cytokine expression. By constrast, in DO11.10 mice, which are transgenic for an OVA-specific TCR, the same treatment fails to induce eosinophilia, but instead promotes lung neutrophilia. In this study, we show that this neutrophilic infiltration results from increased IL-17A and IL-17F production, whereas the eosinophilic response could be restored upon blockade of IFN-γ, independently of the Th17 response. In addition, we identified a CD4(+) cell population specifically present in DO11.10 mice that mediates the same inflammatory response upon transfer into RAG2(-/-) mice. This population contained a significant proportion of cells expressing an additional endogenous TCR α-chain and was not present in RAG2(-/-) DO11.10 mice, suggesting dual antigenic specificities. This particular cell population expressed markers of memory cells, secreted high levels of IL-17A, and other cytokines after short-term restimulation in vitro, and triggered a neutrophilic response in vivo upon OVA aerosol challenge. The relative numbers of these dual TCR lymphocytes increased with the age of the animals, and IL-17 production was abolished if mice were treated with large-spectrum antibiotics, suggesting that their differentiation depends on foreign Ags provided by gut microflora. Taken together, our data indicate that dual TCR expression biases the OVA-specific response in DO11.10 mice by inhibiting eosinophilic responses via IFN-γ and promoting a neutrophilic inflammation via microbiota-induced Th17 differentiation.  相似文献   

19.
This study aims to explore the influences of Paraoxonase‐1 (PON1) involved in airway inflammation and remodeling in asthma. Mice were divided into control, asthma, asthma + PON1 and asthma + NC groups, and asthma models were established via aerosol inhalation of ovalbumin (OVA). HE, Masson, and PAS stains were used to observe airway inflammation and remodeling, Giemsa staining to assess inflammatory cells in bronchoalveolar lavage fluid (BALF), qRT‐PCR and Western blot to detect PON1 expression, lipid peroxidation and glutathione assays to quantify malondialdehyde (MDA) activity and glutathione peroxidase (GSH) levels, ELISA to determine inflammatory cytokines and immunoglobulin, and colorimetry to detect PON1 activities. Additionally, mice lung macrophages and fibroblasts were transfected with PON1 plasmid in vitro; ELISA and qRT‐PCR were performed to understand the effects of PON1 on inflammatory cytokines secreted by lung macrophages, MTT assay for lung fibroblasts proliferation and qRT‐PCR and Western blot for the expressions of PON1, COL1A1, and fibronectin. After overexpression of PON1, the asthma mice had decreased inflammatory cell infiltration, fibrosis degree, and airway wall thickness; inflammatory cells and inflammatory cytokines in BALF were also reduced, expressions of OVA‐IgE and IgG1, and MDA activity were decreased, but the expressions of OVA‐IgG2a and INF‐γ and GSH levels were increased. Besides, PON1 significantly inhibited microphage expression of LPS‐induced inflammatory cytokines, lung fibroblast proliferation, and COL1A1 and fibronectin expression. Thus, PON1 could relieve airway inflammation and airway remodeling in asthmatic mice and inhibit the secretion of LPS‐induced macrophage inflammatory cytokines and the proliferation of lung fibroblasts.  相似文献   

20.
Identification of new therapeutic targets for the management of septic shock remains imperative as all investigational therapies, including anti-tumor necrosis factor (TNF) and anti-interleukin (IL)-1 agents, have uniformly failed to lower the mortality of critically ill patients with severe sepsis. We report here that macrophage migration inhibitory factor (MIF) is a critical mediator of septic shock. High concentrations of MIF were detected in the peritoneal exudate fluid and in the systemic circulation of mice with bacterial peritonitis. Experiments performed in TNFalpha knockout mice allowed a direct evaluation of the part played by MIF in sepsis in the absence of this pivotal cytokine of inflammation. Anti-MIF antibody protected TNFalpha knockout from lethal peritonitis induced by cecal ligation and puncture (CLP), providing evidence of an intrinsic contribution of MIF to the pathogenesis of sepsis. Anti-MIF antibody also protected normal mice from lethal peritonitis induced by both CLP and Escherichia coli, even when treatment was started up to 8 hours after CLP. Conversely, co-injection of recombinant MIF and E. coli markedly increased the lethality of peritonitis. Finally, high concentrations of MIF were detected in the plasma of patients with severe sepsis or septic shock. These studies define a critical part for MIF in the pathogenesis of septic shock and identify a new target for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号