首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type V collagen is a "minor" component of normal human breast stroma, which is subjected to over-deposition in cases of ductal infiltrating carcinoma (DIC). We reported that, if used as a culture substrate for the DIC cell line 8701-BC, it exhibited poorly-adhesive properties and restrained the proliferative and motile behavior of the cell subpopulation able to attach onto it. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of 8701-BC cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by type V collagen was of the apoptotic type by (i) microscopic detection and quantitation of Apoptag-labeled cells, (ii) analysis of the expression levels of selected genes coding for apoptosis-linked factors, caspases, and stress-response proteins by conventional and semi-quantitative multiplex PCR, and (iii) evaluation of the extent of caspase activation by chromogenic assay. We report here that type V collagen is able to determine an increase in the percentage of Apoptag-positive cells, to up-regulate Bcl-xS, Bad, Dap kinase, hsf-1, mthsp75, caspase-1, -5, -8, -9, and -14, whilst down-regulating Bcl-2, Bcl-xbeta, and hsp60. Treatment of cell lysates with chromogenic tetrapeptide substrates specific for caspase-1, -5, -8, and -9 demonstrated a marked increase of enzymatic activity in the presence of type V collagen. Our data validate 8701-BC cell line as a suitable "in vitro" model for further and more detailed studies on the molecular mechanisms of the death response induced by type V collagen on primary DIC cells.  相似文献   

2.
3.
A continuous cell line of neoplastic cells derived from ductal infiltrating carcinoma of the human breast (8701-BC), was assayed for its ability to adhere to collagen substrates. The collagens used were regular type I and type I homotrimer isolated from primary breast carcinomas. Comparative studies were performed using an embryonic epithelial cell line derived from human intestine (Int. 407). The neoplastic cells adhere equally well to both collagens, while the embryonic epithelial cells recognized only the homotrimer. Some receptor diversity was recognized in the adhesion of the two cell lines to homotrimer collagen. The data demonstrate a functional difference between type I and homotrimer collagen with regard to cellular recognition and attachment. In addition, the data suggest that oncogenic transformation of breast epithelial cells promotes their adhesive properties to interstitial collagens and that this may be relevant to their increased potential to invade host tissue.  相似文献   

4.
It is widely acknowledged that the presence of extracellular matrix components as substrates can drastically modulate the phenotype and gene expression of cultured cells, including tumor cells. A number of published reports indicated that substrates made from two peculiar collagen species, i.e. type V and OF/LB, which are abnormally deposited in the stroma of primary ductal infiltrating carcinoma (d.i.c.) of the breast “in vivo,” were able to exert marked and opposite effects on “in vitro” viability, growth and invasiveness of the 8701-BC cell line, isolated from d.i.c.-affected breast epithelium. To complement such functional data on the effect of cell-collagen interactions with information at molecular level, we have utilized a combination of differential display- and semi-quantitative multiplex-PCR techniques with the aim of detecting variations in the expression levels of selected genes by cells maintained in either culture condition. Here we report some prototypical data on the identification and semi-quantitation of three of the differentially-amplified PCR products found, i.e.HSP2A andMSF-B which are up-regulated in cells grown onto OF/LB collagen substrate, andSRCAP which is prominently down-regulated in the presence of type V collagen substrate. This protocol represents a powerful tool for evaluating changes in the levels and patterns of gene expression which can be theoretically adapted to any experimental model system. Published: November 24, 2003  相似文献   

5.
6.
7.
We have previously reported that type V collagen is a poorly adhesive, anti-proliferative and motility-inhibitory substrate for the 8701-BC breast cancer cell line, which also triggers DNA fragmentation and impairs survival of the same cell line. In the present work we have extended to other breast cancer cell lines (T47-D, MDA-MB231, Hs578T) our investigation of type V collagen influence on the DNA status and cell survival, also examining whether adhesion and growth of cells on this collagen substrate could exert some effect on the expression level of selected apoptosis-related genes. We report here that, among the cell lines tested, only T47-D is responsive to the death-promoting influence of type V collagen. In addition, the latter induces changes in gene expression by up-regulating p53, Waf-1, Cas, Dap kinase and caspases 1, -5 and -14 and down-regulating Bcl-2. Our data validate the T47-D line as a suitable in vitro model for further and more detailed studies on the molecular mechanisms of the death response induced by type V collagen on mammary tumor cells.  相似文献   

8.
9.
We have previously described the occurrence, in breast and colon cancer extra-cellular matrix, of an oncofoetal form of collagen, OF/LB, able to induce an increase in cell proliferation and motility in the breast cancer cell line 8701-BC. It also caused an increased amount of type V collagen which appears to exert an anti-proliferative effect on the same cells. The aim of the present study was to investigate, at the proteomic level, the effect of OF/LB and type V collagens used as substrates for neoplastic cell growth. Due to the complexity of a whole proteomic profile, a subset of significant protein classes was used to assess variations in protein expression levels. For this study we adopted a multivariate statistical procedure that allows a global view of the variations induced by different growth conditions, when several variables have to be analyzed simultaneously. The results of this research indicate that in response to different growth substrates, chaperons and heat shock proteins contributed most to the dissimilarity in levels of expression of the selected protein spots. Moreover, we observed that different isoforms of the same protein showed independent levels of expression from one another in relation to the different collagen treatments.  相似文献   

10.
Forty four specimens from neoplastic, hyperplastic and normal human breast tissues were studied for localization of collagens and fibronectin. Affinity purified antihuman type I, III and IV collagens and antifibronectins were utilized by the indirect immunoperoxidase technique on fixed and paraffin-embedded sections. 86% of the cell cytoplasm of infiltrating ductal and 83% of the lobular cancers were positively stained for collagen type I and III. Collagen type IV, however, was detected in 100% of infiltrating ductal and 83% of lobular carcinomas. Focal cytoplasmic staining is a predominant feature for all antigens in the intraduct carcinoma while a diffuse pattern is encountered in the infiltrating types. Intact basement membranes in various lesions always stained for type IV collagen and showed variable staining for type III collagen and fibronectin. Epithelia of normal, benign, hyperplastic breast and most medullary carcinoma were negative for the three collagen types. Our results are in favour of the view that infiltrating breast carcinoma cells produce inappropriately the majority of collagens and inconsistently other proteins such as fibronectin.  相似文献   

11.
Type I-trimer collagen, isolated from biopsy fragments of ductal infiltrating carcinomas, was used as a substrate for human breast carcinoma cells in long-term culture to monitor growth rate, morphological appearance and actin organization in comparison with normal type I collagen and plain plastic. After 11 days of culture, type I-trimer collagen exerts a more pronounced effect on cell proliferation, leading to a final increment of cell population of 35% versus regular type I substrate. Furthermore, type I-trimer collagen induces cell motility, as testified by morphological appearance and actin immunofluorescence test. On the basis of the in vitro results, it is postulated that in vivo the stromal areas containing trimer collagen, rather than repressing invasive growth, may provide a more suitable environment for tumor proliferation and spreading-out with respect to regular type I.  相似文献   

12.
《The Journal of cell biology》1996,135(5):1415-1426
A number of factors have been implicated in the regulation of tissue- specific collagen fibril diameter. Previous data suggest that assembly of heterotypic fibrils composed of two different fibrillar collagens represents a general mechanism regulating fibril diameter. Specifically, we hypothesize that type V collagen is required for the assembly of the small diameter fibrils observed in the cornea. To test this, we used a dominant-negative retroviral strategy to decrease the levels of type V collagen secreted by chicken corneal fibroblasts. The chicken alpha 1(V) collagen gene was cloned, and retroviral vectors that expressed a polycistronic mRNA encoding a truncated alpha 1(V) minigene and the reporter gene LacZ were constructed. The efficiency of viral infection was 30-40%, as determined by assaying beta- galactosidase activity. To assess the expression from the recombinant provirus, Northern analysis was performed and indicated that infected fibroblasts expressed high steady-state levels of retroviral mRNA. Infected cells synthesized the truncated alpha 1(V) protein, and this was detectable only intracellularly, in a distribution that colocalized with lysosomes. To assess endogenous alpha 1(V) protein levels, infected cell cultures were assayed, and these consistently demonstrated reductions relative to control virus-infected or uninfected cultures. Analyses of corneal fibril morphology demonstrated that the reduction in type V collagen resulted in the assembly of large- diameter fibrils with a broad size distribution, characteristics similar to fibrils produced in connective tissues with low type V concentrations. Immunoelectron microscopy demonstrated the amino- terminal domain of type V collagen was associated with the small- diameter fibrils, but not the large fibrils. These data indicate that type V collagen levels regulate corneal fibril diameter and that the reduction of type V collagen is sufficient to alter fibril assembly so that abnormally large-diameter fibrils are deposited into the matrix.  相似文献   

13.
Aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) play a crucial role in the pathogenesis of cardiovascular diseases including coronary heart disease, restenosis and atherosclerosis. MicroRNAs are a class of small, non-coding and endogenous RNAs that play critical roles in VSMCs function. In this study, we showed that PDGF-bb, as a stimulant, promoted VSMCs proliferation and suppressed the expression of miR-599. Moreover, overexpression of miR-599 inhibited VSMCs proliferation and also suppressed the PCNA and ki-67 expression. In addition, we demonstrated that ectopic expression of miR-599 repressed the VSMCs migration. We also showed that miR-599 inhibited type I collagen, type V collagen and proteoglycan expression. Furthermore, we identified TGFb2 as a direct target gene of miR-599 in VSMCs. Overexpression of TGFb2 reversed miR-599-induced inhibition of VSMCs proliferation and type I collagen, type V collagen and proteoglycan expression. In conclusion, our findings suggest miR-599 plays a crucial role in controlling VSMCs proliferation and matrix gene expression by regulating TGFb2 expression.  相似文献   

14.
The product of the ATM gene, mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a key role in the detection and repair of DNA double-strand breaks. A-T is defined by progressive cerebellar ataxia, telangiectasia, sensitivity to ionising radiation and genomic instability with cancer predisposition. On the other hand, increased angiogenesis is essential for tumor growth and metastasis. The aim of this study was to investigate ATM expression in breast carcinomas and its relationship to neoangiogenesis. METHODS AND RESULTS: Fifty-two breast tumors from 51 patients, 38 of them with concomitant in situ component (CIS), were analyzed by immunohistochemistry for the expression of ATM. CD34 expression was used for the morphometric evaluation of vasculature. ATM was positive in 1 to 10% of normal epithelial cells. ATM expression was reduced in 55.8% of infiltrating carcinomas, non-reduced in 34.6%, and increased in 9.6%. Expression of ATM in CIS was similar to the infiltrating component in 71% of cases and reduced in 23.7% of them. High-grade ductal infiltrating carcinomas showed lower ATM expression than low-grade ones. Reduced ATM expression also correlated with increased microvascular area. CONCLUSIONS: Reduced ATM expression in breast carcinomas correlated with tumor differentiation and increased microvascular parameters, supporting its role in neoangiogenesis and tumor progression in breast carcinogenesis.  相似文献   

15.
Biomechanical stimuli have fundamental roles in the maintenance and remodeling of ligaments including collagen gene expressions. Mechanical stretching signals are mainly transduced by cell adhesion molecules such as integrins. However, the relationships between stress-induced collagen expressions and integrin-mediated cellular behaviors are still unclear in anterior cruciate ligament cells. Here, we focused on the stretch-related responses of different cells derived from the ligament-to-bone interface and midsubstance regions of human anterior cruciate ligaments. Chondroblastic interface cells easily lost their potential to produce collagen genes in non-stretched conditions, rather than fibroblastic midsubstance cells. Uni-axial mechanical stretches increased the type I collagen gene expression of interface and midsubstance cells up to 14- and 6-fold levels of each non-stretched control, respectively. Mechanical stretches also activated the stress fiber formation by shifting the distribution of integrin αVβ3 to the peripheral edges in both interface and midsubstance cells. In addition, integrin αVβ3 colocalized with phosphorylated focal adhesion kinase in stretched cells. Functional blocking analyses using anti-integrin antibodies revealed that the stretch-activated collagen gene expressions on fibronectin were dependent on integrin αVβ3-mediated cellular adhesions in the interface and midsubstance cells. These findings suggest that the integrin αVβ3-mediated stretch signal transduction might have a key role to stimulate collagen gene expression in human anterior cruciate ligament, especially in the ligament-to-bone interface.  相似文献   

16.
Pancreatic ductal adenocarcinoma (PDAC) is characterized by pronounced fibrotic reaction composed primarily of type I collagen. Although type I collagen functions as a barrier to invasion, pancreatic cancer cells have been shown to respond to type I collagen by becoming more motile and invasive. Because epithelial-mesenchymal transition is also associated with cancer invasion, we examined the extent to which collagen modulated the expression of Snail, a well known regulator of epithelial-mesenchymal transition. Relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels induced Snail. Inhibiting the activity or expression of the TGF-β type I receptor abrogated collagen-induced Snail. Downstream of the receptor, we showed that Smad3 and Smad4 were critical for the induction of Snail by collagen. In contrast, Smad2 or ERK1/2 was not involved in collagen-mediated Snail expression. Overexpression of Snail in PDAC cells resulted in a robust membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14)-dependent invasion through collagen-coated transwell chambers. Snail-expressing PDAC cells also demonstrated MT1-MMP-dependent scattering in three-dimensional collagen gels. Mechanistically, Snail increased the expression of MT1-MMP through activation of ERK-MAPK signaling, and inhibiting ERK signaling in Snail-expressing cells blocked two-dimensional collagen invasion and attenuated scattering in three-dimensional collagen. To provide in vivo support for our findings that Snail can regulate MT1-MMP, we examined the expression of Snail and MT1-MMP in human PDAC tumors and found a statistically significant positive correlation between MT1-MMP and Snail in these tumors. Overall, our data demonstrate that pancreatic cancer cells increase Snail on encountering collagen-rich milieu and suggest that the desmoplastic reaction actively contributes to PDAC progression.  相似文献   

17.
Collagen biosynthesis was assayed in tissue fragments and in cultured neoplastic cells derived from primary ductal infiltrating carcinoma of the human breast. Neoplastic cells "in vitro" produce 3-4% of collagen with respect to the high molecular weight protein fraction. The neosynthesized collagen is mainly composed of alpha 1 (I) chains, which may be assembled as homotrimer molecules, as indicated by their resistance to pepsin digestion. In tissue fragments, (where neoplastic and host stromal cells coexist), the collagen percentage increases up to 15-20% and more than one polypeptide chain is produced. Present data suggest that neoplastic cells "in vivo" contribute to the deposition of collagen components, actively synthesizing a certain amount of the type I-trimer, which is a significant component of the "scirrhous" stroma (Minafra et al.1984; Pucci Minafra et al, 1985). This phenomenon is interpreted as one of the numerous interrelationships occurring at the cell-matrix interface during the malignant growth.  相似文献   

18.
Breast cancer is considered to be a multifactorial disorder caused by both genetic and non-genetic factors. Different histological types of breast cancer differ in response to treatment and may have a divergent clinical course. Breast tissue is heterogeneous, with components of epithelial, mesenchymal, endothelial and lymphopoietic derivation. The genetic heterogeneity of invasive breast cancer is reflected by the wide spectrum of histological types and differentiation grades. Nevertheless, the influences of these cell types on the tumour's total pattern of gene expression can be estimated analytically. Microarrays permit total tissue analysis and provide a stable molecular portrait of tumours. Some investigations suggest differences in the gene expression profiling for ductal and lobular carcinomas. It has been reported that inactivating mutations of the E-cadherin gene are very frequent in infiltrating lobular breast carcinomas. Other than altered expression of E-cadherin, little is known about the underlying biology that distinguishes ductal and lobular tumour subtypes. However, about 8 genes have been identified differentially which are expressed in lobular and ductal cancers: E-CD, survivin, cathepsin B, TPI1, SPRY1, SCYA14, TFAP2B, and thrombospondin 4, osteopontin, HLA-G, and CHC1. Expression profiling of breast cancers can be used diagnostically to distinguish individual histologic subclassifications and may guide the selection of target therapeutics. However, future approaches will need to include methods for high throughput clinical validation and the ability to analyze microscopic samples.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号