首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Changes in the stiffness of hog pericardium tissue, native and treated with dimethyl suberimidate (DMS), are investigated by atomic force microscopy (AFM). Young's modulus is calculated on the basis of the Hertz-Sneddon model. The cross-linking process increases the stiffness of the tissue. The values of Young's modulus are higher for the DMS stabilized pericardium than for the native one. We also observe that the Young's modulus of native tissue increases when the time between getting the biological material and performing the measurements is longer. This process is probably connected with natural degradation of the biological samples.  相似文献   

3.
The kinetic behaviour of phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) has been studied in situ, by using rat erythrocytes and reticulocytes treated with dimethyl suberimidate and 3,3'-dithiobispropionimidate as cross-linking reagents and with digitonin as the delipidating agent. Comparison of the ATP and fructose-6-P saturation curves of phosphofructokinase in dimethyl suberimidate-permeabilized cells with those obtained in haemolysates showed the enzyme to have reduced allosteric properties under in situ conditions, although it still responded to cyclic AMP (300 microM) added as allosteric effector. Non-sigmoidal fructose-6-P saturation curves were also observed using 3,3'-dithiobispropionimidate-permeabilized erythrocytes, either in the absence or in the presence of cyclic AMP. A hyperbolic behaviour was shown after cross-linking reversal of 3,3'-dithiobispropionimidate-permeabilized erythrocytes by treatment with dithiothreitol. Specific activity values of phosphofructokinase were always lower in permeabilized cells than in haemolysates. A significant inhibition of phosphofructokinase specific activity, without any effect on its allosteric behaviour, is exerted by reaction of dimethyl suberimidate or 3,3'-dithiobispropionimidate with erythrocyte lysates in the presence of an inhibitory concentration of ATP. These results suggest that penetration of the cross-linking reagent and its subsequent reaction with intracellular phosphofructokinase will have a direct effect upon the results obtained using this in situ approach.U  相似文献   

4.
Crosslinking of subunits of the high molecular weight oligomer of bovine heart mitochondrial creatine kinase (CKm) by dimethyl suberimidate and subsequent electrophoresis in the presence of sodium dodecyl sulfate gives eight protein bands. An increase in the time course of the enzyme crosslinking reaction results in the protein accumulation in the high molecular weight bands. Evidence has been obtained suggesting that crosslinking involves only the intraoligomeric contact areas. It is concluded that bovine heart CKm is an octamer. Crosslinking of intersubunit contacts in the octameric form of the enzyme by various diimidates has been carried out. The data obtained suggest that within the octamer the CKm subunits have a quasispherical rather than planar arrangement. This finding is supported by electron microscopy data.  相似文献   

5.
6.
Alkylation of bovine brain creatine kinase.   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

7.
8.
To examine the role of changes in the distribution of the creatine kinase (CK) isoenzymes [BB, MB, MM, and mitochondrial CK (mito-CK)] on the creatine kinase reaction velocity in the intact heart, we measured the creatine kinase reaction velocity and substrate concentrations in hearts from neonatal rabbits at different stages of development. Between 3 and 18 days postpartum, total creatine kinase activity did not change, but the isoenzyme distribution and total creatine content changed. Hearts containing 0, 4, or 9% mito-CK activity were studied at three levels of cardiac performance: KCl arrest and Langendorff and isovolumic beating. The creatine kinase reaction velocity in the direction of MgATP production was measured with 31P magnetization transfer under steady-state conditions. Substrate concentrations were measured with 31P NMR (ATP and creatine phosphate) and conventional biochemical analysis (creatine) or estimated (ADP) by assuming creatine kinase equilibrium. The rate of ATP synthesis by oxidative phosphorylation was estimated with oxygen consumption measurements. These results define three relationships. First, the creatine kinase reaction velocity increased as mito-CK activity increased, suggesting that isoenzyme localization can alter reaction velocity. Second, the reaction velocity increased as the rate of ATP synthesis increased. Third, as predicted by the rate equation, reaction velocity increased with the 3-fold increase in creatine and creatine phosphate contents that occurred during development.  相似文献   

9.
Two crystal forms of bovine heart creatine kinase, which are suitable for X-ray diffraction studies, have been grown at room temperature using 2-methyl-2,4-pentanediol as the precipitant at pH 7.2. The space group of the orthorhombic form is P2(1)2(1)2, with unit cell dimensions a = 133 A, b = 128 A and c = 65 A, and there is one dimeric molecule in the asymmetric unit. The space group of the tetragonal form is P4(2)2(1)2, with unit cell dimensions a = b = 132 A and c = 75 A, with one subunit in the asymmetric unit. The tetragonal crystals diffract to at least 2.0 A resolution.  相似文献   

10.
The effect of chemical crosslinking of invertase with a homo-bifunctional bisimidoester on its pH stability was studied. Dimethyl suberimidate (DMS) was used as the crosslinker and pH inactivation was investigated in the pH range of 2.5–10. The inactivation mechanisms of both native and DMS crosslinked invertases were observed to follow first-order kinetics during prolonged incubation. Although DMS crosslinking of invertase increased the pH stability of the enzyme over the complete pH range, it was especially effective over the acidic range. The half-lives of invertase increased almost twofold, on average, by crosslinking at the neutral to the acidic range. The effect of crosslinking was especially pronounced at pH 5 since both the half-life of the native invertase and the stabilization factor were very high. Higher activation free energies of inactivation were obtained for DMS crosslinked invertases over the whole pH range which also indicates the stabilization of invertase by crosslinking.  相似文献   

11.
The effect of chemical crosslinking of invertase with a homo-bifunctional bisimidoester on its pH stability was studied. Dimethyl suberimidate (DMS) was used as the crosslinker and pH inactivation was investigated in the pH range of 2.5–10. The inactivation mechanisms of both native and DMS crosslinked invertases were observed to follow first-order kinetics during prolonged incubation. Although DMS crosslinking of invertase increased the pH stability of the enzyme over the complete pH range, it was especially effective over the acidic range. The half-lives of invertase increased almost twofold, on average, by crosslinking at the neutral to the acidic range. The effect of crosslinking was especially pronounced at pH 5 since both the half-life of the native invertase and the stabilization factor were very high. Higher activation free energies of inactivation were obtained for DMS crosslinked invertases over the whole pH range which also indicates the stabilization of invertase by crosslinking.  相似文献   

12.
This paper demonstrates that the mitochondrial isoenzyme of creatine kinase (CKm) can be solubilized from rabbit heart mitochondria, the outer membrane of which has been removed or at least broken by a digitonin treatment or a short hypotonic exposure, but which has retained an important part of the capacity to phosphorylate ADP. Phosphate, ADP, or ATP, at concentrations which are used to study oxidative phosphorylation and creatine phosphate synthesis, solubilize CKm; the same is true with MgCl2 and KCl. The effect of adenine nucleotides does not seem to be due to their interaction with the adenine nucleotide translocase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that CKm is the main protein released in the described conditions; however, it does not amount to more than 1% of the total protein content of the mitoplasts. When the apparent Km for ATP of CKm was estimated by measuring creatine phosphate synthesis, the values obtained using water-treated mitochondria (0.21 mM) were slightly higher than those of intact mitochondria (0.12 mM) but the difference was not significant. In the former preparation 77% of CKm was in a soluble state. If we can extrapolate these results to intact mitochondria and suppose that in this case a fraction of CKm is also soluble in the intermembrane space, this does not support the theory of functional association between CKm and the adenine nucleotide translocase.  相似文献   

13.
After prolonged ischemia followed by reperfusion of the isolated rat heart, irreversible heart failure is associated with creatine kinase leakage from the cells. The possible implications of MM creatine kinase leakage from myofibrillar compartments on the contractile properties of ventricular muscle have been studied in control versus ischemic hearts. Total creatine kinase activity decreased in ischemic cells while creatine kinase and ATPase activities were not modified in isolated myofibrils. The efficiency of creatine kinase and phosphocreatine in the relaxation of rigor tension in skinned ventricular preparations was not changed after ischemia. Furthermore, neither the pCa/tension relationship nor the rate of tension development following length changes were modified by ischemia. These results show that the contractile properties of myofilaments as well as the functional coupling between myosin ATPase and creatine kinase are preserved in ischemic hearts suffering irreversible contractile failure.  相似文献   

14.
15.
16.
In this study the function of the two isoforms of creatine kinase (CK; EC 2.7.3.2) in myocardium is investigated. The 'phosphocreatine shuttle' hypothesis states that mitochondrial and cytosolic CK plays a pivotal role in the transport of high-energy phosphate (HEP) groups from mitochondria to myofibrils in contracting muscle. Temporal buffering of changes in ATP and ADP is another potential role of CK. With a mathematical model, we analyzed energy transport and damping of high peaks of ATP hydrolysis during the cardiac cycle. The analysis was based on multiscale data measured at the level of isolated enzymes, isolated mitochondria and on dynamic response times of oxidative phosphorylation measured at the whole heart level. Using 'sloppy modeling' ensemble simulations, we derived confidence intervals for predictions of the contributions by phosphocreatine (PCr) and ATP to the transfer of HEP from mitochondria to sites of ATP hydrolysis. Our calculations indicate that only 15±8% (mean±SD) of transcytosolic energy transport is carried by PCr, contradicting the PCr shuttle hypothesis. We also predicted temporal buffering capabilities of the CK isoforms protecting against high peaks of ATP hydrolysis (3750 μM*s(-1)) in myofibrils. CK inhibition by 98% in silico leads to an increase in amplitude of mitochondrial ATP synthesis pulsation from 215±23 to 566±31 μM*s(-1), while amplitudes of oscillations in cytosolic ADP concentration double from 77±11 to 146±1 μM. Our findings indicate that CK acts as a large bandwidth high-capacity temporal energy buffer maintaining cellular ATP homeostasis and reducing oscillations in mitochondrial metabolism. However, the contribution of CK to the transport of high-energy phosphate groups appears limited. Mitochondrial CK activity lowers cytosolic inorganic phosphate levels while cytosolic CK has the opposite effect.  相似文献   

17.
Two methods for quantitation of protein S-thiolation, by isoelectric focusing or by enzyme activity, were used for studying S-thiolation of cytoplasmic cardiac creatine kinase. With these methods, creatine kinase was identified as a major S-thiolated protein in both bovine and rat heart. In rat heart cell cultures, creatine kinase became 10% S-thiolated during a 10 min incubation with 0.2 mM diamide. This enzyme became S-thiolated more slowly than other heart cell proteins and it also dethiolated more slowly. Two sequential additions of diamide at a 25 min interval caused twice as much S-thiolation after the second addition as compared to the first. This increased sensitivity to the second diamide treatment may have resulted from glutathione loss during the first addition which produced a higher GSSG-to-GSH ratio after the second treatment. The GSSG-to-GSH ratio was highest prior to the maximum S-thiolation of creatine kinase, but, in general, the time course of glutathione was similar to the S-thiolation of creatine kinase. This study demonstrates that cytoplasmic creatine kinase is S-thiolated and, therefore, inhibited during a diamide-induced oxidative stress in heart cells. Implications for regulation of cardiac metabolism during oxidative stress are discussed.  相似文献   

18.
53-fold purified creatine kinase is isolated from beef heart mitochondria by phosphate buffer extraction followed by chromatography on DEAE-cellulose and KM-cellulose and preparative electrophoresis in phosphate buffer density gradient. The purified enzyme was homogenous under electrophoresis in agarose gel and moved to cathode. The enzyme did not enter into separating gel under disc electrophoresis in conditions for the separation of neutral anc acid proteins, while under conditions for separating alkaline proteins it produced five fractions. The stability of creatine kinase under storage considerably decreased after the purification.  相似文献   

19.
Creatine kinase (CK) exists as a family of isoenzymes in excitable tissue. We studied isolated perfused hearts from mice lacking genes for either the main muscle isoform of CK (M-CK) or both M-CK and the main mitochondrial isoform (Mt-CK) to determine 1) the biological significance of CK isoenzyme shifts, 2) the necessity of maintaining a high CK reaction rate, and 3) the role of CK isoenzymes in establishing the thermodynamics of ATP hydrolysis. (31)P NMR was used to measure [ATP], [PCr], [P(i)], [ADP], pH, as well as the unidirectional reaction rate of PCr--> [gamma-P]ATP. Developmental changes in the main fetal isoform of CK (BB-CK) were unaffected by loss of other CK isoenzymes. In hearts lacking both M- and Mt-CK, the rate of ATP synthesis from PCr was only 9% of the rate of ATP synthesis from oxidative phosphorylation demonstrating a lack of any high energy phosphate shuttle. We also found that the intrinsic activities of the BB-CK and the MM-CK isoenzymes were equivalent. Finally, combined loss of M- and Mt-CK (but not loss of only M-CK) prevented the amount of free energy released from ATP hydrolysis from increasing when pyruvate was provided as a substrate for oxidative phosphorylation.  相似文献   

20.
A 31P nuclear magnetic resonance saturation transfer method was used to measure the temperature dependence of creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts. A decrease in temperature from 37 to 4°C lowered the observed steady-state fluxes by about 80%. These data were used in conjunction with calculated changes in substrate concentrations with temperature to estimate the activation energy for creatine kinase in situ. The apparent activation energy of 42 kJ/mol agrees reasonably well with the range of literature values for the enzyme in vitro. This demonstrates that the reaction is not diffusion-limited in situ and that extraction and dilution of the enzyme for study in vitro does not alter fundamental kinetic properties of the enzyme exhibited in the intact tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号