首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The human gastrointestinal (GI) tract harbors a complex community of bacterial cells in the mucosa, lumen, and feces. Since most attention has been focused on bacteria present in feces, knowledge about the mucosa-associated bacterial communities in different parts of the colon is limited. In this study, the bacterial communities in feces and biopsy samples from the ascending, transverse, and descending colons of 10 individuals were analyzed by using a 16S rRNA approach. Flow cytometric analysis indicated that 105 to 106 bacteria were present in the biopsy samples. To visualize the diversity of the predominant and the Lactobacillus group community, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was performed. DGGE analysis and similarity index comparisons demonstrated that the predominant mucosa-associated bacterial community was host specific and uniformly distributed along the colon but significantly different from the fecal community (P < 0.01). The Lactobacillus group-specific profiles were less complex than the profiles reflecting the predominant community. For 6 of the 10 individuals the community of Lactobacillus-like bacteria in the biopsy samples was similar to that in the feces. Amplicons having 99% sequence similarity to the 16S ribosomal DNA of Lactobacillus gasseri were detected in the biopsy samples of nine individuals. No significant differences were observed between healthy and diseased individuals. The observed host-specific DGGE profiles of the mucosa-associated bacterial community in the colon support the hypothesis that host-related factors are involved in the determination of the GI tract microbial community.  相似文献   

2.
The gastrointestinal (GI) tract is home to trillions of microbes. Within the same GI tract, substantial differences in the bacterial species that inhabit the oral cavity and intestinal tract have been noted. While the influence of host environments and nutritional availability in shaping different microbial communities is widely accepted, we hypothesize that the existing microbial flora also plays a role in selecting the bacterial species that are being integrated into the community. In this study, we used cultivable microbial communities isolated from different parts of the GI tract of mice (oral cavity and intestines) as a model system to examine this hypothesis. Microbes from these two areas were harvested and cultured using the same nutritional conditions, which led to two distinct microbial communities, each with about 20 different species as revealed by PCR-based denaturing gradient gel electrophoresis analysis. In vitro community competition assays showed that the two microbial floras exhibited antagonistic interactions toward each other. More interestingly, all the original isolates tested and their closely related species displayed striking community preferences: They persisted when introduced into the bacterial community of the same origin, while their viable count declined more than three orders of magnitude after 4 days of coincubation with the microbial flora of foreign origin. These results suggest that an existing microbial community might impose a selective pressure on incoming foreign bacterial species independent of host selection. The observed inter-flora interactions could contribute to the protective effect of established microbial communities against the integration of foreign bacteria to maintain the stability of the existing communities.  相似文献   

3.
The extent to which non-host-associated bacterial communities exhibit small-scale biogeographic patterns in their distribution remains unclear. Our investigation of biogeography in bacterial community composition and function compared samples collected across a smaller spatial scale than most previous studies conducted in freshwater. Using a grid-based sampling design, we abstracted 100+ samples located between 3.5 and 60 m apart within each of three alpine ponds. For every sample, variability in bacterial community composition was monitored using a DNA-fingerprinting methodology (automated ribosomal intergenic spacer analysis) whereas differences in bacterial community function (that is, carbon substrate utilisation patterns) were recorded from Biolog Ecoplates. The exact spatial position and dominant physicochemical conditions (for example, pH and temperature) were simultaneously recorded for each sample location. We assessed spatial differences in bacterial community composition and function within each pond and found that, on average, community composition or function differed significantly when comparing samples located >20 m apart within any pond. Variance partitioning revealed that purely spatial variation accounted for more of the observed variability in both bacterial community composition and function (range: 24–38% and 17–39%) than the combination of purely environmental variation and spatially structured environmental variation (range: 17–32% and 15–20%). Clear spatial patterns in bacterial community composition, but not function were observed within ponds. We therefore suggest that some of the observed variation in bacterial community composition is functionally ‘redundant''. We confirm that distinct bacterial communities are present across unexpectedly small spatial scales suggesting that populations separated by distances of >20 m may be dispersal limited, even within the highly continuous environment of lentic water.  相似文献   

4.
5.
The human gastrointestinal (GI) tract harbors a complex community of bacterial cells in the mucosa, lumen, and feces. Since most attention has been focused on bacteria present in feces, knowledge about the mucosa-associated bacterial communities in different parts of the colon is limited. In this study, the bacterial communities in feces and biopsy samples from the ascending, transverse, and descending colons of 10 individuals were analyzed by using a 16S rRNA approach. Flow cytometric analysis indicated that 10(5) to 10(6) bacteria were present in the biopsy samples. To visualize the diversity of the predominant and the Lactobacillus group community, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was performed. DGGE analysis and similarity index comparisons demonstrated that the predominant mucosa-associated bacterial community was host specific and uniformly distributed along the colon but significantly different from the fecal community (P < 0.01). The Lactobacillus group-specific profiles were less complex than the profiles reflecting the predominant community. For 6 of the 10 individuals the community of Lactobacillus-like bacteria in the biopsy samples was similar to that in the feces. Amplicons having 99% sequence similarity to the 16S ribosomal DNA of Lactobacillus gasseri were detected in the biopsy samples of nine individuals. No significant differences were observed between healthy and diseased individuals. The observed host-specific DGGE profiles of the mucosa-associated bacterial community in the colon support the hypothesis that host-related factors are involved in the determination of the GI tract microbial community.  相似文献   

6.
We compared the function and composition of free-living and particle-associated microbial communities at an inshore site in coastal North Carolina and across a depth profile on the Blake Ridge (offshore). Hydrolysis rates of six different polysaccharide substrates were compared for particle-associated (>3 μm) and free-living (<3 to 0.2 μm) microbial communities. The 16S rRNA- and rDNA-based clone libraries were produced from the same filters used to measure hydrolysis rates. Particle-associated and free-living communities resembled one another; they also showed similar enzymatic hydrolysis rates and substrate preferences. All six polysaccharides were hydrolyzed inshore. Offshore, only a subset was hydrolyzed in surface water and at depths of 146 and 505 m; just three polysaccharides were hydrolyzed at 505 m. The spectrum of bacterial taxa changed more subtly between inshore and offshore surface waters, but changed greatly with depth offshore. None of the OTUs occurred at all sites: 27 out of the 28 major OTUs defined in this study were found either exclusively in a surface or in a mid-depth/bottom water sample. This distinction was evident with both 16S rRNA and rDNA analyses. At the offshore site, despite the low community overlap, bacterial communities maintained a degree of functional redundancy on the whole bacterial community level with respect to hydrolysis of high-molecular-weight substrates.  相似文献   

7.
The Moorea Coral Reef Long Term Ecological Research (LTER) Site (17.50°S, 149.83°W) comprises the fringe of coral reefs and lagoons surrounding the volcanic island of Moorea in the Society Islands of French Polynesia. As part of our Microbial Inventory Research Across Diverse Aquatic LTERS biodiversity inventory project, we characterized microbial community composition across all three domains of life using amplicon pyrosequencing of the V6 (bacterial and archaeal) and V9 (eukaryotic) hypervariable regions of small-subunit ribosomal RNA genes. Our survey spanned eight locations along a 130-km transect from the reef lagoon to the open ocean to examine changes in communities along inshore to offshore gradients. Our results illustrate consistent community differentiation between inshore and offshore ecosystems across all three domains, with greater richness in all domains in the reef-associated habitats. Bacterial communities were more homogenous among open ocean sites spanning >100 km than among inshore sites separated by <1 km, whereas eukaryotic communities varied more offshore than inshore, and archaea showed more equal levels of dissimilarity among subhabitats. We identified signature communities representative of specific geographic and geochemical milieu, and characterized co-occurrence patterns of specific microbial taxa within the inshore ecosystem including several bacterial groups that persist in geographical niches across time. Bacterial and archaeal communities were dominated by few abundant taxa but spatial patterning was consistent through time and space in both rare and abundant communities. This is the first in-depth inventory analysis of biogeographic variation of all three microbial domains within a coral reef ecosystem.  相似文献   

8.
Colonization of the gastrointestinal (GI) tract is initiated during birth and continually seeded from the individual’s environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated), while another group (control) was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07), and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively). The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as have a beneficial effect on systemic immune responses as demonstrated with M. hyopneumoniae infection.  相似文献   

9.
The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB.  相似文献   

10.
Microbial communities in soils may change in accordance with distance, season, climate, soil texture and other environmental parameters. Microbial diversity patterns have been extensively surveyed in temperate regions, but few such studies attempted to address them with respect to spatial and temporal scales and their correlations to environmental factors, especially in arid ecosystems. In order to fill this gap on a regional scale, the molecular fingerprints and abundance of three taxonomic groups – Bacteria, α-Proteobacteria and Actinobacteria – were sampled from soils 0.5–100 km apart in arid, semi-arid, dry Mediterranean and shoreline Mediterranean regions in Israel. Additionally, on a local scale, the molecular fingerprints of three taxonomic groups – Bacteria, Archaea and Fungi – were sampled from soils 1 cm–500 m apart in the semi-arid region, in both summer and winter. Fingerprints of the Bacteria differentiated between all regions (P<0.02), while those of the α-Proteobacteria differentiated between some of the regions (0.01<P<0.09), and actinobacterial fingerprints were similar among all regions (P>0.05). Locally, fingerprints of archaea and fungi did not display distance-decay relationships (P>0.13), that is, the dissimilarity between communities did not increase with geographic distance. Neither was this phenomenon evident in bacterial samples in summer (P>0.24); in winter, however, differences between bacterial communities significantly increased as the geographic distances between them grew (P<0.01). Microbial community structures, as well as microbial abundance, were both significantly correlated to precipitation and soil characteristics: texture, organic matter and water content (R2>0.60, P<0.01). We conclude that on the whole, microbial biogeography in arid and semi-arid soils in Israel is determined more by specific environmental factors than geographic distances and spatial distribution patterns.  相似文献   

11.
Bacterioplankton community diversity was investigated in the subtropical Brisbane River-Moreton Bay estuary, Australia (27°25′S, 153°5′E). Bacterial communities were studied using automated rRNA intergenic spacer analysis (ARISA), which amplifies 16S-23S ribosomal DNA internally transcribed spacer regions from mixed-community DNA and detects the separated products on a fragment analyzer. Samples were collected from eight sites throughout the estuary and east to the East Australian Current (Coral Sea). Bacterioplankton communities had the highest operational taxonomic unit (OTU) richness, as measured by ARISA at eastern bay stations (S [total richness] = 84 to 85 OTU) and the lowest richness in the Coral Sea (S = 39 to 59 OTU). Richness correlated positively with bacterial abundance; however, there were no strong correlations between diversity and salinity, NO3 and PO43− concentrations, or chlorophyll a concentration. Bacterioplankton communities at the riverine stations were different from communities in the bay or Coral Sea. The main differences in OTU richness between stations were in taxa that each represented 0.1% (the detection limit) to 0.5% of the total amplified DNA, i.e., the “tail” of the distribution. We found that some bacterioplankton taxa are specific to distinct environments while others have a ubiquitous distribution from river to sea. Bacterioplankton richness and diversity patterns in the estuary are potentially a consequence of greater niche availability, mixing of local and adjacent environment communities, or intermediate disturbance. Furthermore, these results contrast with previous reports of spatially homogeneous bacterioplankton communities in other coastal waters.  相似文献   

12.
Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species—the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E−9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E−14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356–896 OTUs) was >2-fold higher than in the MI (112–567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that can effectively breakdown a wide variety of complex polysaccharides.  相似文献   

13.
Little is known about bacterial communities that colonize mucosal surfaces in the human gastrointestinal tract, but they are believed to play an important role in host physiology. The objectives of this study were to investigate the compositions of these populations in the distal small bowel and colon. Healthy mucosal tissue from either the terminal ileum (n = 6) or ascending (n = 8), transverse (n = 8), or descending colon (n = 4) of 26 patients (age, 68.5 ± 1.2 years [mean ± standard deviation]) undergoing emergency resection of the large bowel was used to study these communities. Mucosa-associated eubacteria were characterized by using PCR-denaturing gradient gel electrophoresis (DGGE), while real-time PCR was employed for quantitative analysis. Mucosal communities were also visualized in situ using confocal laser scanning microscopy. DGGE banding profiles from all the gut regions exhibited at least 45% homology, with five descending colon profiles clustering at ca. 75% concordance. Real-time PCR showed that mucosal bacterial population densities were highest in the terminal ileum and that there were no significant differences in overall bacterial numbers in different parts of the colon. Bifidobacterial numbers were significantly higher in the large bowel than in the terminal ileum (P = 0.006), whereas lactobacilli were more prominent in the distal large intestine (P = 0.019). Eubacterium rectale (P = 0.0004) and Faecalibacterium prausnitzii (P = 0.001) were dominant in the ascending and descending colon. Site-specific colonization in the gastrointestinal tract may be contributory in the etiology of some diseases of the large intestine.  相似文献   

14.
Culturing and molecular techniques were used to monitor changes in the bacterial flora of the avian gastrointestinal (GI) tract following introduction of genetically modified (GM) and unmodified probiotics. Community hybridization of amplified 16S ribosomal DNA demonstrated that the bacterial flora of the GI tract changed significantly in response to the probiotic treatments. The changes were not detected by culturing. Although both GM and non-GM strains of Enterococcus faecium NCIMB 11508 changed the bacterial flora of the chicken GI tract, they did so differently. Probing the community DNA with an Enterococcus faecalis-specific probe showed that the relative amount of E. faecalis in the total eubacterial population increased in the presence of the non-GM strain and decreased in the presence of the GM probiotic compared with the results obtained with an untreated control group.  相似文献   

15.
This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity.  相似文献   

16.
Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities that could be separated from other measured effects.  相似文献   

17.
Stromatolites, organosedimentary structures formed by microbial activity, are found throughout the geological record and are important markers of biological history. More conspicuous in the past, stromatolites occur today in a few shallow marine environments, including Hamelin Pool in Shark Bay, Western Australia. Hamelin Pool stromatolites often have been considered contemporary analogs to ancient stromatolites, yet little is known about the microbial communities that build them. We used DNA-based molecular phylogenetic methods that do not require cultivation to study the microbial diversity of an irregular stromatolite and of the surface and interior of a domal stromatolite. To identify the constituents of the stromatolite communities, small subunit rRNA genes were amplified by PCR from community genomic DNA with universal primers, cloned, sequenced, and compared to known rRNA genes. The communities were highly diverse and novel. The average sequence identity of Hamelin Pool sequences compared to the >200,000 known rRNA sequences was only ~92%. Clone libraries were ~90% bacterial and ~10% archaeal, and eucaryotic rRNA genes were not detected in the libraries. The most abundant sequences were representative of novel proteobacteria (~28%), planctomycetes (~17%), and actinobacteria (~14%). Sequences representative of cyanobacteria, long considered to dominate these communities, comprised <5% of clones. Approximately 10% of the sequences were most closely related to those of α-proteobacterial anoxygenic phototrophs. These results provide a framework for understanding the kinds of organisms that build contemporary stromatolites, their ecology, and their relevance to stromatolites preserved in the geological record.  相似文献   

18.
The effects of abrupt dietary transition on the faecal microbiota of forage-fed horses over a 3-week period were investigated. Yearling Thoroughbred fillies reared as a cohort were exclusively fed on either an ensiled conserved forage-grain diet (“Group A”; n = 6) or pasture (“Group B”; n = 6) for three weeks prior to the study. After the Day 0 faecal samples were collected, horses of Group A were abruptly transitioned to pasture. Both groups continued to graze similar pasture for three weeks, with faecal samples collected at 4-day intervals. DNA was isolated from the faeces and microbial 16S and 18S rRNA gene amplicons were generated and analysed by pyrosequencing. The faecal bacterial communities of both groups of horses were highly diverse (Simpson’s index of diversity >0.8), with differences between the two groups on Day 0 (P<0.017 adjusted for multiple comparisons). There were differences between Groups A and B in the relative abundances of four genera, BF311 (family Bacteroidaceae; P = 0.003), CF231 (family Paraprevotellaceae; P = 0.004), and currently unclassified members within the order Clostridiales (P = 0.003) and within the family Lachnospiraceae (P = 0.006). The bacterial community of Group A horses became similar to Group B within four days of feeding on pasture, whereas the structure of the archaeal community remained constant pre- and post-dietary change. The community structure of the faecal microbiota (bacteria, archaea and ciliate protozoa) of pasture-fed horses was also identified. The initial differences observed appeared to be linked to recent dietary history, with the bacterial community of the forage-fed horses responding rapidly to abrupt dietary change.  相似文献   

19.
Antibiotic use in humans has been associated with outgrowth of fungi. Here we used a murine model to investigate the gut microbiome over 76 days of treatment with vancomycin, ampicillin, neomycin, and metronidazole and subsequent recovery. Mouse stool was studied as a surrogate for the microbiota of the lower gastrointestinal tract. The abundance of fungi and bacteria was measured using quantitative PCR, and the proportional composition of the communities quantified using 454/Roche pyrosequencing of rRNA gene tags. Prior to treatment, bacteria outnumbered fungi by >3 orders of magnitude. Upon antibiotic treatment, bacteria dropped in abundance >3 orders of magnitude, so that the predominant 16S sequences detected became transients derived from food. Upon cessation of treatment, bacterial communities mostly returned to their previous numbers and types after 8 weeks, though communities remained detectably different from untreated controls. Fungal communities varied substantially over time, even in the untreated controls. Separate cages within the same treatment group showed radical differences, but mice within a cage generally behaved similarly. Fungi increased ∼40-fold in abundance upon antibiotic treatment but declined back to their original abundance after cessation of treatment. At the last time point, Candida remained more abundant than prior to treatment. These data show that 1) gut fungal populations change radically during normal mouse husbandry, 2) fungi grow out in the gut upon suppression of bacterial communities with antibiotics, and 3) perturbations due to antibiotics persist long term in both the fungal and bacterial microbiota.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号