首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibacterial effects of knotwood extractives on paper mill bacteria   总被引:2,自引:0,他引:2  
Hydrophilic knotwood extracts from 18 wood species were assessed in disc diffusion and liquid culture tests for antibacterial effects against three species of paper mill bacteria. The Pinus sylvestris, P. resinosa, P. contorta, and P. banksiana extracts decreased or inhibited bacterial growth. The susceptibility order was P. sylvestris > P. resinosa > P. contorta > P. banksiana, correlating with the concentrations of pinosylvin and pinosylvin monomethyl ether in these wood species. Also, Pseudotsuga menziesii and Thuja occidentalis extracts had a small inhibitory effect. The Gram-positive Bacillus coagulans was more susceptible to the extracts than the Gram-negative Burkholderia multivorans and Alcaligenes xylosoxydans. The main components in the Pinus knotwood extracts were pinosylvin monomethyl ether and pinosylvin, suggesting these to be the active components. Therefore, pure pinosylvin, pinosylvin monomethyl ether, and dihydro-pinosylvin monomethyl ether were also tested. All compounds showed antibacterial effects. However, higher concentrations were needed for these pure compounds than for the knotwood extracts. Pinosylvin had stronger antibacterial effects than pinosylvin monomethyl ether. This work shows that knotwood extracts, especially from Pinus species, have a potential for use as natural biocides in papermaking.  相似文献   

2.
Wood properties were measured for trees in lowland dipterocarp forests in West Kalimantan. In 1993 and 1994, 353 samples of 286 species were collected from trunk base of trees of approximately 5 cm in diameter, and the specific gravities (SG: oven dry weight/fresh volume) and water contents of wood including bark were measured. The SG of each species ranged from 0.21 to 0.84, and the mean ± SD was 0.53 ± 0.13. The wide range of SG suggests that the forest had a high diversity in wood properties. The most dominant and diversified genus in this area was Shorea, and the SG of 15 species varied from 0.21 to 0.71. The range covered SG of pioneer (six Macaranga, 0.29–0.43) and small trees in primary forests (nine Eugenia and 10 Xanthophyllum, 0.55–0.77). The SG average for tree species of secondary forests of 2–6 years old was 0.31. It was significantly smaller than that of primary forests (0.58). In a primary dipterocarp forest plot, light-wood species grew faster in diameter than heavy-wood species. Water content ranged from 0.26 to 0.76. Heavy wood had low water content. Among light-wood species, some (Shorea, Artocarpus) had low water contents and others (Ficus) had high water contents. Some riverine trees also had high water contents. These wood properties appear strongly related to the life history of trees and successional stage.  相似文献   

3.
  1. Pissodes castaneus represents an emerging pest species for Pinus spp. production in Latin America. This species attacks all the cultivated pine species in Patagonia Argentina causing wood damage and tree death. The objectives of this work were to describe the host preference behaviour of P. castaneus and the influence of wood damage by conspecifics on its host selection.
  2. In two-choice bioassays, P. castaneus showed a feeding preference for Pinus contorta over P. ponderosa. However, percent weight gain when feeding on either species was similar.
  3. In other bioassays, P. castaneus spent more time in areas with twigs on which other conspecifics had recently fed, although they were able to successfully feed on twigs without previous damage.
  4. These results show that while P. castaneus can successfully colonize different pine species, P. contorta may be more susceptible to attack than P. ponderosa. Silvicultural management should be prioritized considering the weevil's preference for attacking damaged hosts.
  相似文献   

4.
Here, we studied the evolution of salt glands in 11 species of Tamarix and determined their role in adaptation to saline environments by measuring the effect of NaCl on plant growth and salt gland characteristics. Cluster analysis divided Tamarix species into three types (types I–III) according to salt‐gland characteristics. A phylogenetic tree based on ITS sequences indicated an evolutionary relationship consistent with the geographical distribution of Tamarix. We measured growth under different NaCl conditions (0, 100, 200, and 300 mM) for 40 days in three species (Tgallica, Tramosissima, and Tlaxa) representing the three Tamarix types. With increasing NaCl concentration, the biomass of all species was significantly reduced, especially that of Tgallica. Salt secretion ability and salt‐gland density showed similar trends in three types. The order of salt tolerance was type I > type II > type III. We conclude that during Tamarix adaptation to salinity, salt‐gland evolution followed two directions: one increasing salt‐gland density, and the other increasing salt secretion rate per salt‐gland. This study provides a basis for potential mechanisms of recretohalophyte adaptation to salinity.  相似文献   

5.
Metapopulation‐structured species can be negatively affected when landscape fragmentation impairs connectivity. We investigated the effects of urbanization on genetic diversity and gene flow for two sympatric amphibian species, spotted salamanders (Ambystoma maculatum) and wood frogs (Lithobates sylvaticus), across a large (>35,000 km2) landscape in Maine, USA, containing numerous natural and anthropogenic gradients. Isolation‐by‐distance (IBD) patterns differed between the species. Spotted salamanders showed a linear and relatively high variance relationship between genetic and geographic distances (r = .057, p < .001), whereas wood frogs exhibited a strongly nonlinear and lower variance relationship (r = 0.429, p < .001). Scale dependence analysis of IBD found gene flow has its most predictable influence (strongest IBD correlations) at distances up to 9 km for spotted salamanders and up to 6 km for wood frogs. Estimated effective migration surfaces revealed contrasting patterns of high and low genetic diversity and gene flow between the two species. Population isolation, quantified as the mean IBD residuals for each population, was associated with local urbanization and less genetic diversity in both species. The influence of geographic proximity and urbanization on population connectivity was further supported by distance‐based redundancy analysis and multiple matrix regression with randomization. Resistance surface modeling found interpopulation connectivity to be influenced by developed land cover, light roads, interstates, and topography for both species, plus secondary roads and rivers for wood frogs. Our results highlight the influence of anthropogenic landscape features within the context of natural features and broad spatial genetic patterns, in turn supporting the premise that while urbanization significantly restricts interpopulation connectivity for wood frogs and spotted salamanders, specific landscape elements have unique effects on these two sympatric species.  相似文献   

6.
Clonal repeatabilities on individual tree (Hi2 H_i^2 ) and clonal mean (H[`(C)] 2 H_{{\overline C }}^2 ) bases for growth (14-year height and volume), wood quality traits (latewood proportion, wood density, fiber length, and microfibril angle), and genotypic correlations among the traits were estimated, using 30 white spruce (Picea glauca [Moench] Voss) clones from six full-sib families (five per family). These families were selected from a clonally replicated test to represent different early growth categories: fast, moderate, and slow. Wood increment cores of the 30 clones were collected from two contrasting sites at age 19 years. For growth traits, in contrast to most wood quality traits, more genetic variation was accounted for by clone within family than by family within growth category. Both growth and wood quality traits appear to be under moderate genetic control, with [^(H)]i2 = 0.20 - 0.36 \widehat{H}_i^2 = 0.20 - 0.36 and [^(H)][`(C)] 2 = 0.70 - 0.83 \widehat{H}_{{\overline C }}^2 = 0.70 - 0.83 . The only exception was microfibril angle ( [^(H)]i2 = 0.10  \textand  [^(H)][`(C)] 2 = 0.34 \widehat{H}_i^2 = 0.10\;{\text{and}}\;\widehat{H}_{{\overline C }}^2 = 0.34 ). Generally, faster growth resulted in a significantly lower latewood proportion and lower overall wood density. Selection for faster growth does not appear to impact on either fiber length or microfibril angle. Among the wood quality traits, significant genotypic association was observed only between latewood proportion and wood density. Despite the generally negative association between growth and wood density among families, several fast-growing clones maintained above-average density. This implies that, by adopting multiclonal forestry, one can simultaneously improve growth and wood density.  相似文献   

7.
Kojima M  Becker VK  Altaner CM 《Planta》2012,235(2):289-297
Koromiko [Hebe salicifolia G. Forst. (Pennell)] is a woody angiosperm native to New Zealand and Chile. Hebe spp. belong to the otherwise herbaceous family Plantaginaceae in the order Lamiales. Reaction wood exerting expansional forces was found on the lower side of leaning H. salicifolia stems. Such reaction wood is atypical for angiosperms, which commonly form contracting reaction wood on the upper side of leaning stems. Reaction wood typical for angiosperms is formed by species in other families in the order Lamiales. This suggests that the form of reaction wood is specific to the family level. Functionally the reaction wood of H. salicifolia is similar to that found in gymnosperms, which both act by pushing. However, their chemical, anatomical and physical characteristics are different. Typical features of reaction wood present in gymnosperms such as high density, thick-walled rounded cells and the presence of (1 → 4)-β-galactan in the secondary cell wall layer are absent in H. salicifolia reaction wood. Reaction wood of H. salicifolia varies from normal wood in having a higher microfibril angle, which is likely to determine the direction of generated maturation stresses.  相似文献   

8.
Wood-feeding, nesting and production of secondary reproductives are key determinant traits of invasive species of drywood termites, and the West Indian drywood termite Cryptotermes brevis (Walker) is one of their major examples of worldwide concern as pest species of structural lumber, furniture and other wood products. The problem and losses by this species are determined by the prevailing wood characteristics. However, despite the current widespread occurrence of this species in the tropics, except Asia, tropical wood resistance and underlying mechanisms of resistance against this termite are scarcely known. Nonetheless, wood hardness and particularly wood density were recently recognized as important underlying traits for C. brevis resistance in tropical woods, but the chemical wood constituents were not considered. Here, we assessed tropical wood resistance to the invasive termite species Cbrevis and tested the relevance of their holocellulose, lignin and (total) extractive contents preventing termite infestation. Free-choice and no-choice tests were carried out in parallel with wood chemical characterization. Resistance to the West Indian termite varied with wood species in terms of both colonization and consumption, but only under free-choice testing because without choice, no significant difference was detected among wood species. Regardless, none of these traits were significantly correlated with wood resistance to C. brevis. Therefore, wood physical resistance, particularly wood density, seems the main recognized determinant of tropical wood resistance against the West Indian drywood termite. The pattern of termite movement on the surface of soft, mid and hard wood was also consistent with this conclusion.  相似文献   

9.
The Sundarbans, the largest contiguous mangrove forest in the world, covers 6,017 km2 of the coastal zone of Bangladesh. Heritiera fomes Buch.-Ham., Excoecaria agallocha L. and Ceriops decandra (Griff.) Ding Hou jointly cover 95% of the forest area. In this study, the results of four forest inventories have been analyzed to understand observed vegetation dynamics of the Sundarbans from 1926 to 1997. The diversity of forest types has been gradually reduced over time, but H. fomes and E. agallocha have maintained their dominance over large portions of the forest. H. fomes is spread over 67% of the vegetated area of the forest, concentrated mostly in the northeastern area, and constitutes 75% of the density of trees with >15 cm dbh. The distribution and stem density of H. fomes show negative relationships with that of E. agallocha and C. decandra. In terms of coverage, E. agallocha is the most common species, spread over 74% of the vegetated area of the forest, and constitutes 39% of the density of trees with >2.5 cm dbh. On a longer timeframe (1926–1997), the dominance (coverage and density of larger diameter trees) of H. fomes as well as that of E. agallocha is declining. Even on parameters such as density of trees with >15 cm dbh, the dominance of E. agallocha is declining at a much greater rate than H. fomes. This observation contradicts the successional schemes proposed by different authors. This might indicate that theorizing successional schemes based on short-term observations on vegetation dynamics is not sufficient. The effect of human interference, changes in hydroedaphic condition and species interaction should be taken into consideration during explaining observed vegetation dynamics. Moreover, the need to understand vegetation trajectories at the micro-scale should be emphasized.  相似文献   

10.
Tooth shape is used to differentiate between morphologically similar species of vertebrates, including fish. This study aimed to quantify tooth shape of three sympatric species: Haplochromis kamiranzovu, H. insidiae, and H. astatodon endemic to Lake Kivu, whose existing identification criteria are currently only qualitative. A quantitative tooth shape analysis was performed based on digitized tooth outline data with a subsequent elliptic Fourier analysis to test for differences among the three species. We looked at crown shape and size differences within H. kamiranzovu and H. insidiae at geographical, habitat, and gender levels. No comparison at habitat level was done for H. astatodon because it is found only in littoral zone. The analysis revealed significant tooth shape differences among the three species. Haplochromis astatodon had a significantly longer major cusp height and a longer and larger minor cusp than that of H. insidiae. It had also a longer major cusp height and a longer and larger minor cusp than that of H. kamiranzovu. Tooth shape differences of H. kamiranzovu and H. insidiae species were not significantly different between littoral and pelagic fish (p > .05) while differences were significant between southern and northern Lake Kivu populations (p < .05). Tooth sizes in H. kamiranzovu and H. insidiae were significantly different, both in height and width as well as in their ratios, and this was true at sex and geographic levels (p < .05), but not at habitat level (p > .05). Tooth shape was also significantly different with sharp teeth for males compared with females of southern populations versus northern ones. These shape‐ and size‐related differences between sexes suggest differences in the foraging strategies toward available food resources in the lake habitat. Further research should explain the genetic basis of the observed pattern.  相似文献   

11.
Competition among six wood decay fungi was studied using 15×15 mm wood blocks placed in 250×250 mm plastic trays filled with unsterilized sand or clay. The wood blocks were preinoculated with Heterobasidion annosum (Fr.) Bref., Resinicium bicolor (Alb. & Schw. ex Fr.) Parm., Phanerochaete sanguinea (Fr.) Hjortstam, Coniophora sp. DC. ex Me"rat, Armillaria borealis Marxmuller and Korhonen and Hypholoma capnoides (Fr.) Kummer before they were combined in all possible combinations in the trays. Two methods were used, one with all wood blocks inoculated, and one with sterilized non-inoculated wood blocks distributed between the inoculated ones. Wood blocks preinoculated with the six species were also used in a pairwise competition test. Following incubation for 9 months in darkness at 21°C, mycelia were reisolated and identified. R. bicolor was most successful at invading through the soil and replacing other species in the wood blocks. P. sanguinea, Coniophora sp. and H. capnoides also had some success.  相似文献   

12.
Question: How do tree seedlings differ in their responses to drought and fire under contrasting light conditions in a tropical seasonal forest? Location: Mae Klong Watershed Research Station, 100–900 m a.s.l, Kanchanaburi Province, western Thailand. Method: Seedlings of six trees, Dipterocarpus alatus, D. turbinatus, Shorea siamensis, Pterocarpus macrocarpus, Xylia xylocarpa var. kerrii and Sterculia macrophylla, were planted in a gap and under the closed canopy. For each light condition, we applied (1) continuous watering during the dry season (W); (2) ground fire during the dry season (F); (3) no watering/no fire (intact, I). Seedling survival and growth were followed. Results: Survival and growth rate were greater in the gap than under the closed canopy for all species, most dramatically for S. siamensis and P. macrocarpus. Dipterocarpus alatus and D. turbinatus had relatively high survival under the closed canopy, and watering during the dry season resulted in significantly higher survival rates for these two species. Watering during the dry season resulted in higher growth rates for five species. All seedlings of D. alatus and D. turbinatus failed to re‐sprout and died after fire. The survival rates during the dry season and after the fire treatment were higher for the seedlings grown in the canopy gap than in the shade for S. siamensis, P. macrocarpus, X. xylocarpa var. kerrii and S. macrophylla. The seedlings of these species in the canopy gap had higher allocation to below‐ground parts than those under the closed canopy, which may support the ability to sprout after fire. Conclusions: The light conditions during the rainy season greatly affect seedling survival and resistance to fire during the subsequent dry season. Our results suggest differentiation among species in terms of seedling adaptations to shade, drought and fire.  相似文献   

13.
Genetic study on the physical properties of Coffea arabica L. wood   总被引:1,自引:0,他引:1  
The physical characteristics of wood are not usually considered as selection criteria when breeding perennial species that are grown for their fruits or seeds. In the coffee tree, stem breakage during harvesting and lodging during the growth period are major defects in some cultivars. These defects are linked to certain physical and mechanical properties of the wood, such as density or rigidity, which can be characterized by a parameter used in the resistance of materials: the Modulus of Elasticity (MOE). Wood density and the longitudinal MOE were studied on the stems of coffee trees of the species Coffee arabica L., derived from a diallel mating design. The MOE was measured by an acoustic system based on an analysis of the vibrations produced by a blow to the end of a piece of wood of known geometry. The MOE obtained in that way, along with the density of coffee tree stem wood, displayed substantial heritability. A strong link between the average internode length and the yield cumulated over 4 years was detected. Wood density was also correlated to yield and wood elasticity. Classification of parents according to the wood characteristics of their progenies depended on their degree of introgression by the species C. canephora. These traits could therefore be used to measure introgression, possibly as predictors of traits of agronomic interest, and as target traits in the creation of tall C. arabica varieties.
Christian CilasEmail: Fax: +334-67615581
  相似文献   

14.
The aims of this study were to determine the wood chemical composition of 25 species of Cactaceae and to relate the composition to their anatomical diversity. The hypothesis was that wood chemical components differ in relationship to their wood features. The results showed significant differences in wood chemical compounds across species and genera (< 0.05). Pereskia had the highest percentage of lignin, whereas species of Coryphantha had the lowest; extractive compounds in water were highest for Echinocereus, Mammillaria, and Opuntia. Principal component analysis showed that lignin proportion separated the fibrous, dimorphic, and non‐fibrous groups; additionally, the differences within each type of wood occurred because of the lignification of the vascular tissue and the type of wall thickening. Compared with other groups of species, the Cactaceae species with fibrous and dimorphic wood had a higher lignin percentage than did gymnosperms and Acer species. Lignin may confer special rigidity to tracheary elements to withstand desiccation without damage during adverse climatic conditions.  相似文献   

15.
The parasitic phaeophycean endophyte Herpodiscus durvillaeae (Lindauer) G. R. South has previously only been recorded from New Zealand, in association with a single host species, Durvillaea antarctica (Chamisso) Hariot (southern bull‐kelp). Here we use DNA sequence data from plastid and nuclear markers (chloroplast rbcL, ribosomal LSU, and a nuclear pseudogene copy of COI) to test for the presence of H. durvillaeae beyond the New Zealand region, and on host species other than D. antarctica. Analyses of samples from the Falkland Islands confirm the first record of H. durvillaeae from the Atlantic Ocean. We report that Falkland Islands H. durvillaeae are genetically indistinguishable from samples of this species from New Zealand's sub‐Antarctic Campbell Island, suggesting recent dispersal of the parasite across the Pacific Ocean, presumably by rafting with its buoyant macroalgal host. We also here record Hdurvillaeae from New Zealand endemics Durvillaea poha Fraser et al. and D. willana Lindauer.  相似文献   

16.
Late Prehistoric Wood Use in an Andean Intermontane Valley. Economic Botany 59(4): 337-355, 2005. Data from carbonized wood remains from five late prehistoric sites (A.D. 1300–1530) in the Upper Mantaro Valley, Peru, are presented. The wood assemblage recovered is diverse. We illustrate and describe the twelve main morpho-types, one of which is more than likely to have been imported from the eastern slopes of the Andean mountains into the Mantaro Valley. The Inka conquest of the area created a change in socio-political power and also brought about a shift in the way wood species were utilized. From the Wanka II to the Inka occupations we find an increase in theBuddleja, Polylepis, Alnus, andColletia morpho-types: all of these species are reported as being cultivated by the Inka and possibly by pre-Inka inhabitants of the valley. A quantitative analysis shows higher amounts of wood in the elite dwellings of both the Wanka II and Wanka III times, suggesting a social aspect in the way this valuable Andean commodity was distributed and used.
Résumé   El Uso de Madera Prehistorico Tardio en un Valle Andino. Fueron analizados los restos de madera provenientes de cinco sitios del período prehistorico tardio (1300–1530 d.C.) del Alto Valle Mantaro, Perú. La asamblea de moderns era muy variada Ilutramos y describimos las doce categorías taxonómicas prinicipales, una de las cuales probablamente fue importada desde las cuestas orientales de los Andes. La conquista Inkaica de la región efectuó un cambio de énfasis en los morfotipos de madera usados, con un aumento deBuddleja, Polylepis,Alnus, yColletia. Un análisis cuantitativo muestra una concentracion de maderas en las habitaciones de la clase élite, sugeriendo un aspecto social en el uso de la madera.
  相似文献   

17.
Within‐plant spatial variation in herbivore pressure can induce localized antiherbivory defence responses. We tested this hypothesis by studying branch‐specific responses of Acacia robusta, Dichrostachys cinerea and Ziziphus mucronata to simulated mammalian herbivory. Herbivory was simulated by clipping the terminal shoots (3 cm from tip) of tree branchlets, allowing them one year of regrowth and then comparing their spine length and density and condensed tannins with those of adjacent unclipped branchlets. Condensed tannins concentrations were higher in clipped branchlets than in unclipped branchlets in all three woody species (P < 0.05). Spine length was higher in clipped branchlets than in unclipped branchlets in A. robusta (P < 0.05) but was similar in both D. cinerea and Z. mucronata (P > 0.05). Spine density was double in clipped branchlets as compared to the unclipped branchlets in Z. mucronata (P < 0.05) but was similar in both A. robusta and D. cinerea (P > 0.05). We found evidence of within‐plant variation in condensed tannins concentration and spine length and density in response to simulated herbivory in the three woody species.  相似文献   

18.
Biochar and manure can be used for sustainable land management. However, little is known about how soil amendments might affect surface and belowground microbial processes and subsequent wood decomposition. In a split-split-split plot design, we amended soil with two rates of manure (whole plot; 0 and 9 Mg ha−1) and biochar (split plot; 0 and 10 Mg ha−1). Wood stakes of three species (hybrid poplar, triploid Populus tomentosa Carr.; aspen, Populus tremuloides Michx.; and pine, Pinus taeda L.) were placed in two positions (horizontally on the soil surface, and inserted vertically in the mineral soil), which served as a substrate for fungal growth. In 3 years, the decomposition rate (density loss), moisture content, and fungal community (via high-throughput sequencing methods) of stakes were evaluated. Results indicated that biochar and/or manure increased the wood stake decomposition rates, moisture content, and operational taxonomic unit abundance. However, the richness and diversity of fungi were dependent on wood stake position (surface > mineral), species (pine > the two Populus), and sample dates. This study highlights that soil amendment with biochar and/or manure can alter the fungal community, which in turn can enhance an important soil process (i.e., decomposition).  相似文献   

19.
We incubated 196 large-diameter aspen (Populus tremuloides), birch (Betula papyrifera), and pine (Pinus taeda) logs on the FACE Wood Decomposition Experiment encompassing eight climatically-distinct forest sites in the United States. We sampled dead wood from these large-diameter logs after 2 to 6 y of decomposition and determined wood rot type as a continuous variable using the lignin loss/density loss ratio (L/D) and assessed wood-rotting fungal guilds using high-throughput amplicon sequencing (HTAS) of the ITS-2 marker. We found L/D values in line with a white rot dominance in all three tree species, with pine having lower L/D values than aspen and birch. Based on HTAS data, white rot fungi were the most abundant and diverse wood-rotting fungal guild, and soft rot fungi were more abundant and diverse than brown rot fungi in logs with low L/D values. For aspen and birch logs, decay type was related to the wood density at sampling. For the pine logs, decay type was associated with the balance between white and brown/soft rot fungi abundance and OTU richness. Our results demonstrate that decay type is governed by biotic and abiotic factors, which vary by tree species.  相似文献   

20.
A comparative study was carried out on the methanolic extracts from six Achillea species and the examined polyphenols from these plants on the formation of advanced glycation end‐products (AGE) in vitro. Apachycephala which was richer in flavonoids (15 mg quercetin/g W) and phenolics (111.10 mg tannic acid/g DW) with substantial antioxidant activity (IC50 = 365.5 μg/ml) presented strong anti‐AGE properties. Chlorogenic acid, luteolin, quercetin and caffeic acid were identified as the major polyphenols in the extracts by HPLC. In general, polyphenolic content follows the order of Apachycephalla > Anobilis > Afilipendulina > Asantolina > Aaucheri > Amillefolium. Most extracts exhibited marked anti‐AGE ability in the bovine serum albumin (BSA)/methylglyoxal (MG) system, though Apachycephala showed the highest potential. The formation of AGEs was assessed by monitoring the production of fluorescent products and circular dichroism (CD) spectroscopy. Diminution in free radical production (assessed by 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) assays) is discussed as potential mechanism for delay or reduced AGE. The results demonstrate the antiglycative, antioxidant and antimicrobial potential of Achillea species which can be attributed to polyphenols content and the effectiveness on generation of AGEs, thus Achillea species can be considered as natural sources for slowing down glycation related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号