首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate islet function after carbohydrate ingestion. Whether incretin hormones are of importance for islet function after ingestion of noncarbohydrate macronutrients is not known. This study therefore examined integrated incretin and islet hormone responses to ingestion of pure fat (oleic acid; 0.88 g/kg) or protein (milk and egg protein; 2 g/kg) over 5 h in healthy men, aged 20-25 yr (n=12); plain water ingestion served as control. Both intact (active) and total GLP-1 and GIP levels were determined as was plasma activity of dipeptidyl peptidase-4 (DPP-4). Following water ingestion, glucose, insulin, glucagon, GLP-1, and GIP levels and DPP-4 activity were stable during the 5-h study period. Both fat and protein ingestion increased insulin, glucagon, GIP, and GLP-1 levels without affecting glucose levels or DPP-4 activity. The GLP-1 responses were similar after protein and fat, whereas the early (30 min) GIP response was higher after protein than after fat ingestion (P<0.001). This was associated with sevenfold higher insulin and glucagon responses compared with fat ingestion (both P<0.001). After protein, the early GIP, but not GLP-1, responses correlated to insulin (r(2)=0.86; P=0.0001) but not glucagon responses. In contrast, after fat ingestion, GLP-1 and GIP did not correlate to islet hormones. We conclude that, whereas protein and fat release both incretin and islet hormones, the early GIP secretion after protein ingestion may be of primary importance to islet hormone secretion.  相似文献   

2.
The biology of incretin hormones   总被引:1,自引:0,他引:1  
Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote β cell proliferation and inhibit apoptosis, leading to expansion of β cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.  相似文献   

3.
The incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut hormones that act via the enteroinsular axis to potentiate insulin secretion from the pancreas in a glucose-dependent manner. Both GLP-1 receptor and GIP receptor knockout mice (GLP-1R(-/-) and GIPR(-/-), respectively) have been generated to investigate the physiological importance of this axis. Although reduced GIP action is a component of type 2 diabetes, GIPR-deficient mice exhibit only moderately impaired glucose tolerance. The present study was directed at investigating possible compensatory mechanisms that take place within the enteroinsular axis in the absence of GIP action. Although serum total GLP-1 levels in GIPR knockout mice were unaltered, insulin responses to GLP-1 from pancreas perfusions and static islet incubations were significantly greater (40-60%) in GIPR(-/-) than in wild-type (GIPR(+/+)) mice. Furthermore, GLP-1-induced cAMP production was also elevated twofold in the islets of the knockout animals. Pancreatic insulin content and gene expression were reduced in GIPR(-/-) mice compared with GIPR(+/+) mice. Paradoxically, immunocytochemical studies showed a significant increase in beta-cell area in the GIPR-null mice but with less intense staining for insulin. In conclusion, GIPR(-/-) mice exhibit altered islet structure and topography and increased islet sensitivity to GLP-1 despite a decrease in pancreatic insulin content and gene expression.  相似文献   

4.
Hexosamines serve a nutrient-sensing function through enzymatic O-glycosylation of proteins. We previously characterized transgenic (Tg) mice with overexpression of the rate-limiting enzyme in hexosamine production, glutamine:fructose-6-phosphate amidotransferase, in beta-cells. Animals were hyperinsulinemic, resulting in peripheral insulin resistance. Glucose tolerance deteriorated with age, and males developed diabetes. We therefore examined islet function in these mice by perifusion in vitro. Young (2-mo-old) Tg animals had enhanced sensitivity to glucose of insulin secretion. Insulin secretion was maximal at 20 mM and half maximal at 9.9 +/- 0.5 mM glucose in Tg islets compared with maximal at 30 mM and half maximal at 13.5 +/- 0.7 mM glucose in wild type (WT; P < 0.005). Young Tg animals secreted more insulin in response to 20 mM glucose (Tg, 1,254 +/- 311; WT, 425 +/- 231 pg x islet(-1) x 35 min(-1); P < 0.01). Islets from older (8-mo-old) Tg mice became desensitized to glucose, with half-maximal secretion at 16.1 +/- 0.8 mM glucose, compared with 11.8 +/- 0.7 mM in WT (P < 0.05). Older Tg mice secreted less insulin in response to 20 mM glucose (Tg, 2,256 +/- 342; WT, 3,493 +/- 367 pg x islet(-1) x 35 min(-1); P < 0.05). Secretion in response to carbachol was similar in WT and Tg at both ages. Glucose oxidation was blunted in older Tg islets. At 5 mM glucose, islet CO2 production was comparable between Tg and WT. However, WT mice increased islet CO2 production 2.7 +/- 0.4-fold in 20 mM glucose, compared with only 1.4 +/- 0.1-fold in Tg (P < 0.02). Results demonstrate that hexosamines are involved in nutrient sensing for insulin secretion, acting at least in part by modulating glucose oxidation pathways. Prolonged excess hexosamine flux results in glucose desensitization and mimics glucose toxicity.  相似文献   

5.
Glucose-dependent insulinotropic polypeptide (GIP) is a key physiological insulin releasing peptide and potential antidiabetic agent. The present study was undertaken in an attempt to develop small molecular weight GIP agonist and antagonist molecules. The bioactivity of two modified C-terminally truncated fragment GIP peptides, GIP(1-16) and (Pro3)GIP(1-16), was examined in terms of insulin secretion and glucose homeostasis using BRIN-BD11 cells and type 2 diabetic mice. In vitro insulin release studies demonstrated that GIP(1-16) and (Pro3)GIP(1-16) possessed weak GIP-receptor agonist and antagonistic properties, respectively. Intraperitoneal administration of GIP(1-16) in combination with glucose to obese diabetic (ob/ob) mice did not effect the glycaemic excursion and had a marginal effect on insulin release. GIP(1-16) was substantially less effective than the native GIP(1-42). (Pro3)GIP(1-16) administration significantly curtailed (P < 0.05) the insulinotropic and glucose lowering effects of native GIP, but was significantly less effective than (Pro3)GIP. Based on the established concept of a therapeutic benefit of GIP receptor antagonism in obesity-diabetes, ob/ob mice received once daily injection of (Pro3)GIP(1-16) for 14 days. No significant effects were observed on food intake, body weight, HbA1c, glucose tolerance, metabolic response to feeding and either insulin secretion or insulin sensitivity following prolonged (Pro3)GIP(1-16) treatment. These data demonstrate that C-terminal truncation of GIP or (Pro3)GIP yields small molecular weight GIP molecules with significantly reduced biological activity that precludes therapeutic utility.  相似文献   

6.
Nateglinide, a novel D-phenylalanine derivative, stimulates insulin release via closure of KATP channels in pancreatic β-cell, a primary mechanism of action it shares with sulfonylureas (SUs) and repaglinide. This study investigated (1) the influence of ambient glucose levels on the insulinotropic effects of nateglinide, glyburide and repaglinide, and (2) the influence of the antidiabetic agents on glucose-stimulated insulin secretion (GSIS) in vitro from isolated rat islets. The EC50 of nateglinide to stimulate insulin secretion was 14 μM in the presence of 3mM glucose and was reduced by 6-fold in 8mM glucose and by 16-fold in 16mM glucose, indicating a glucose-dependent insulinotropic effect. The actions of glyburide and repaglinide failed to demonstrate such a glucose concentration-dependent sensitization. When tested at fixed and equipotent concentrations (~2x EC50 in the presence of 8mM glucose) nateglinide and repaglinide shifted the EC50s for GSIS to the left by 1.7mM suggesting an enhancement of islet glucose sensitivity, while glimepiride and glyburide caused, respectively, no change and a right shift of the EC50. These data demonstrate that despite a common basic mechanism of action, the insulinotropic effects of different agents can be influenced differentially by ambient glucose and can differentially influence the islet responsiveness to glucose. Further, the present findings suggest that nateglinide may exert a more physiologic effect on insulin secretion than comparator agents and thereby have less propensity to elicit hypoglycemia in vivo.  相似文献   

7.
Fatty acid derivatisation was used to develop two novel, long-acting, N-terminally modified, glucose-dependent insulinotropic polypeptide (GIP) analogues, N-AcGIP(LysPAL16) and N-AcGIP(LysPAL37). In contrast to GIP, which was rapidly degraded by in vitro incubation with dipeptidylpeptidase IV (DPP IV) (52% intact after 2 h), the analogues remained fully intact for up to 24 h. Both fatty acid-derivatised analogues stimulated cAMP production in GIP receptor Chinese hamster lung (CHL) fibroblasts (EC50 12.1-13.0 nM) and significantly improved in vitro insulin secretion from BRIN-BD11 cells (1.1- to 2.4-fold; p < 0.05 to p < 0.001) compared to control (5.6 mM glucose). Administration of N-AcGIP(LysPAL16) and N-AcGIP(LysPAL37) together with glucose in obese diabetic (ob/ob) mice significantly reduced the glycaemic excursion (1.4- and 1.5-fold, respectively; p < 0.05 to p < 0.01) and improved the insulinotropic response (1.5- and 2.3-fold, respectively; p < 0.01 to p < 0.001) compared to native peptide. Dose-response studies with N-AcGIP(LysPAL37) revealed that even the lowest concentration (6.25 nmol/kg) induced a highly significant decrease (1.4-fold; p < 0.001) in the overall glycaemic excursion, coupled with a significant increase (2.0-fold; p < 0.01) in circulating insulin. Furthermore, basal glucose values remained significantly reduced (p < 0.05) and insulin values increased 24 h following a single injection of N-AcGIP(LysPAL37). The glucose-lowering action of the fatty acid-derivatised peptide was greater than that of N-AcGIP. These data demonstrate that novel fatty acid-derivatised analogues of N-terminally modified AcGIP function as long-acting GIP-receptor agonists, with significant antidiabetic potential.  相似文献   

8.
To investigate early secretory defects in prediabetes, we evaluated beta-Cell function and insulin sensitivity (M value, by euglycemic clamp) in 26 normotolerant first-degree relatives of type 2 diabetic patients (FDR) and 17 age- and weight-matched control subjects. beta-Cell function was assessed by modeling analysis of glucose and C-peptide concentrations measured during 24 h of standardized living conditions. Fasting and total insulin secretion (ISR) were increased in FDR, as was ISR at a reference 5 mM glucose level (ISR5, 107 +/- 6 vs. 87 +/- 6 pmol x min(-1) x m(-2), P < 0.05). ISR5 was inversely related to M in controls (ISR5 = k/M1.23, rho = -0.74, P < 0.005) but not in FDR; when M was accounted for (by calculating a compensation index ISR5 x M1.23), compensation for insulin resistance was impaired in FDR (10.8 +/- 1.0 vs. 13.4 +/- 0.6 units, P < 0.05). Potentiation of ISR, expressing relative transient increases in glucose-stimulated ISR during meals, was impaired in FDR (1.29 +/- 0.08 vs. 1.62 +/- 0.08 during 1st meal, P < 0.02). Moreover, the potentiation time course was related to glucose-dependent insulin-releasing polypeptide (GIP) concentrations in both groups, and the sensitivity of potentiation to GIP derived from this relationship tended to be impaired in FDR. Compensation index, potentiation, and sensitivity to GIP were interrelated parameters (P < 0.05 or less). beta-Cell function parameters were also related to mean 24-h glucose levels (r2 = 0.63, P < 0.0001, multivariate model). In conclusion, although in absolute terms ISR is increased in insulin-resistant FDR, beta-cell function shows a cluster of interrelated abnormalities involving compensation for insulin resistance, potentiation, and sensitivity to GIP, suggesting a beta-cell defect in the amplifying pathway of insulin secretion.  相似文献   

9.
We examined the effects of different physiological concentrations of glucose on cytoplasmic Ca(2+) handling and mitochondrial membrane potential (Deltapsi(m)) and insulin secretion in single mouse islet cells. The threshold for both glucose-induced changes in Ca(2+) and Deltapsi(m) ranged from 6 to 8 mM. Glucose step-jumps resulted in sinusoidal oscillations of cytoplasmic Ca(2+), whereas Deltapsi(m) reached sustained plateaus with oscillations interposed on the top of these plateaus. The amplitude of the Ca(2+) rise (height of the peak) did not vary with glucose concentration, suggesting a "digital" rather than "analog" character of this aspect of the oscillatory Ca(2+) response. The average glucose-dependent elevation of cytoplasmic Ca(2+) concentration during glucose stimulation reached saturation at 8 mM stimulatory glucose, whereas Deltapsi(m) showed a linear glucose dose-response relationship over the range of stimulatory glucose concentrations (4-16 mM). Glucose-dependent increases in insulin secretion correlated well with Deltapsi(m), but not with average Ca(2+) concentration. These data show that an ATP-dependent K(+) channel-independent pathway is operative at the single cell level and suggest mitochondrial metabolism may be a determining factor in explaining graded, glucose concentration-dependent increases in insulin secretion.  相似文献   

10.
This study examines the actions of the novel enzyme-resistant, NH2-terminally modified GIP analog (Hyp(3))GIP and its fatty acid-derivatized analog (Hyp(3))GIPLys(16)PAL. Acute effects are compared with the established GIP receptor antagonist (Pro(3))GIP. All three peptides exhibited DPP IV resistance, and significantly inhibited GIP stimulated cAMP formation and insulin secretion in GIP receptor-transfected fibroblasts and in clonal pancreatic BRIN-BD11 cells, respectively. Likewise, in obese diabetic ob/ob mice, intraperitoneal administration of GIP analogs significantly inhibited the acute antihyperglycemic and insulin-releasing effects of native GIP. Administration of once daily injections of (Hyp(3))GIP or (Hyp(3))GIPLys(16)PAL for 14 days resulted in significantly lower plasma glucose levels (P < 0.05) after (Hyp(3))GIP on days 12 and 14 and enhanced glucose tolerance (P < 0.05) and insulin sensitivity (P < 0.05 to P < 0.001) in both groups by day 14. Both (Hyp(3))GIP and (Hyp(3))GIPLys(16)PAL treatment also reduced pancreatic insulin (P < 0.05 to P < 0.01) without affecting islet number. These data indicate that (Hyp(3))GIP and (Hyp(3))GIPLys(16)PAL function as GIP receptor antagonists with potential for ameliorating obesity-related diabetes. Acylation of (Hyp(3))GIP to extend bioactivity does not appear to be of any additional benefit.  相似文献   

11.
To investigate the enteroinsular axis (EIA) in equines oral (oGTT) and intravenous (i.v.GTT) glucose tolerance tests (5.6 and 1 mmol glucose/kg BW, respectively) were performed with healthy, normal weight large horses and Shetland ponies. Plasma was analysed for concentrations of glucose, glucose-dependent insulinotropic polypeptide (GIP) and insulin. In all equines plasma GIP concentrations only increased significantly when glucose was administered orally. The insulin glucose ratio (IGR) was significantly higher during the oGTT than during the i.v.GTT in both races. Basal plasma glucose levels were significantly higher in large horses than in ponies in both experiments. During the oGTT maximum glucose values were significantly higher in ponies. Ponies tended to a higher insulin secretion but the IGRs were identical in both races after oral and intravenous glucose administration. One clinically inconspicuous pony showed hyperinsulinaemia and, in case of the oGTT, insulin resistance, glucose intolerance, and GIP hypersecretion. The results of this study indicate the existence of an EIA in equines due to the higher IGRs during the oGTT. Furthermore, the similarity of plasma GIP levels and IGRs in ponies and large horses suggest a comparable activity of the EIA in both races. Regarding the elevated plasma GIP concentrations of the insulin resistant pony the EIA appears to participate in equine hyperinsulinaemia.  相似文献   

12.
Porcine diazepam-binding inhibitor (pDBI) is a novel peptide that has been isolated from the small bowel of the pig, and that occurs also in the islet D-cells. We have studied its effects on hormone release in vitro from the endocrine pancreas of the rat. In isolated islets, pDBI (10(-9)-10(-6)M) did not affect basal insulin release at 3.3 mM glucose, whereas stimulated release at 8.3 mM glucose was dose-dependently suppressed by 32-69% (P less than 0.01). Furthermore, insulin secretion stimulated by either 16.7 mM glucose or 1 mM IBMX (3-isobutyl-1-methylxanthine) or 1 micrograms/ml glibenclamide was suppressed by pDBI at 10(-8) M (by 28-30%, P less than 0.05) and 10(-7) M (by 43-47%, P less than 0.01). In contrast, islet insulin secretion induced by 20 mM arginine was unaffected by these concentrations of pDBI. In the perfused rat pancreas, pDBI (10(-8) M) enhanced by 30% (P less than 0.05) the first phase (0-5 min) of arginine-stimulated insulin release, whereas the second phase (5-20 min) was unchanged. Moreover, pDBI suppressed by 28% (P less than 0.05) the second phase of arginine-induced glucagon release. Arginine-induced somatostatin release was not significantly affected by the peptide. Since pDBI immunoreactivity has been localized also to islet D-cells, the present results suggest that pDBI may act as a local modulator of islet hormone release.  相似文献   

13.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

14.
Enteroendocrine (EE) cells represent complex, rare, and diffusely-distributed intestinal epithelial cells making them difficult to study in vivo. A specific sub-population of EE cells called Gut K-cells produces and secretes glucose-dependent insulinotropic peptide (GIP), a hormone important for glucose homeostasis. The factors that regulate hormone production and secretion, as well as the timing of peptide release, are remarkably similar for K-cells and islet beta-cells suggesting engineering insulin production by K-cells is a potential gene therapeutic strategy to treat diabetes. K-cell lines could be used to study the feasibility of this potential therapy and to understand Gut K-cell physiology in general. Heterogeneous STC-1 cells were transfected with a plasmid (pGIP/Neo) encoding neomycin phosphotransferase, driven by the GIP promoter-only cells in which the GIP promoter was active survived genetic selection. Additional clones expressing pGIP/Neo plus a GIP promoter/insulin transgene were isolated-only doubly transfected cells produced preproinsulin mRNA. Bioactive insulin was stored and then released following stimulation with arginine, peptones, and bombesin-physiological GIP secretagogues. Like K-cells in vivo, the GIP/insulin-producing cells express the critical glucose sensing enzyme, glucokinase. However, glucose did not regulate insulin or GIP secretion or mRNA levels. Conversely, glyceraldehyde and methyl-pyruvate were secretagogues, indicating cells depolarized in response to changes in intracellular metabolite levels. Potassium channel opening drugs and sulphonylureas had little effect on insulin secretion by K-cells. The K-cell lines also express relatively low levels of Kir 6.1, Kir 6.2, SUR1, and SUR2 suggesting secretion is independent of K(ATP) channels. These results provided unexpected insights into K-cell physiology and our experimental strategy could be easily modified to isolate/characterize additional EE cell populations.  相似文献   

15.
The identification of pancreastatin in pancreatic extracts prompted the investigation of its effects on islet cell function. However, in most of the investigations to date, pig pancreastatin was tested in heterologous species. Since there is great interspecies variability in the amino acid sequence of pancreastatin, we have investigated the influence of rat pancreastatin on insulin, glucagon and somatostatin secretion in a homologous animal model, namely the perfused rat pancreas. During 5.5 mM glucose infusion, pancreastatin (40 nM) inhibited insulin secretion (ca. 40%, P less than 0.025) as well as the insulin responses to 10 mM arginine (ca. 50%, P less than 0.025) and to 1 nM vasoactive intestinal polypeptide (ca. 50%; P less than 0.05). Pancreastatin failed to significantly modify glucagon or somatostatin release under any of the above experimental conditions. In addition, a lower pancreastatin concentration (15.7 nM) markedly suppressed the insulin release evoked by 11 mM glucose (ca. 85%, P less than 0.05). Our present observations reinforce the concept that pancreastatin is an effective inhibitor of insulin secretion, influencing the B-cell function directly and not through an A-cell or D-cell paracrine effect.  相似文献   

16.
Dramatic improvement of type 2 diabetes is commonly observed after bariatric surgery. However, the mechanisms behind the alterations in glucose homeostasis are still elusive. We examined the effect of duodenal-jejunal bypass (DJB), which maintains the gastric volume intact while bypassing the entire duodenum and the proximal jejunum, on glycemic control, β-cell mass, islet morphology, and changes in enteroendocrine cell populations in nonobese diabetic Goto-Kakizaki (GK) rats and nondiabetic control Wistar rats. We performed DJB or sham surgery in GK and Wistar rats. Blood glucose levels and glucose tolerance were monitored, and the plasma insulin, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) levels were measured. β-Cell area, islet fibrosis, intestinal morphology, and the density of enteroendocrine cells expressing GLP-1 and/or GIP were quantified. Improved postprandial glycemia was observed from 3 mo after DJB in diabetic GK rats, persisting until 12 mo after surgery. Compared with the sham-GK rats, the DJB-GK rats had an increased β-cell area and a decreased islet fibrosis, increased insulin secretion with increased GLP-1 secretion in response to a mixed meal, and an increased population of cells coexpressing GIP and GLP-1 in the jejunum anastomosed to the stomach. In contrast, DJB impaired glucose tolerance in nondiabetic Wistar rats. In conclusion, although DJB worsens glucose homeostasis in normal nondiabetic Wistar rats, it can prevent long-term aggravation of glucose homeostasis in diabetic GK rats in association with changes in intestinal enteroendocrine cell populations, increased GLP-1 production, and reduced β-cell deterioration.  相似文献   

17.
In pancreatic islets of adult (three month) and old (24 month) rats the effect of glucose on glucose oxidation, pyridine nucleotides, glutathione and insulin secretion was studied. DNA content was similar in both groups of animals; however, islets of old rats exhibited 30% less insulin content. While glucose-induced (16.7 mM) insulin secretion in islets of old rats was approximately 50% less than in islets of adults, no significant difference was observed in the insulin releasing effect of theophylline (1 mM). Although islet production of 14CO2 in the presence of 16.7 mM glucose increased equally in both groups, elevation of glucose failed to increase the percentage of total glucose oxidation via the pentose phosphate shunt in islets of old rats. Elevation of glucose increased the NADPH/NADP and the NADH/NAD ratio in both groups of islets in a similar manner. The effect of glucose on the GSH/GSSG ratio revealed a dose-related increase in the islets of adult rats, whereas islets of old rats did not respond to elevation of glucose. Our data seem to indicate that the lower secretory response of islets of old rats is related to the failure of glucose to increase the GSH/GSSG ratio. In contrast the insulin release induced by theophylline does not appear to depend on islet thiols.  相似文献   

18.
The secretion of insulin from perifused rat pancreatic islets was stimulated by raising the glucose concentration from 5.6 to 20 mM or by exposure to tolbutamide. The addition of sodium lactate (40 mM) to islets perifused in the presence of glucose (5.6 mM) resulted in a small, transient, rise in the rate of secretion. The subsequent removal of lactate, but not glucose or tolbutamide, from the perifusate produced a dramatic potentiation of insulin release. The rate of efflux of 45Ca2+ was also increased when islets were exposed to a high concentration of glucose or lactate or to tolbutamide, and again subsequently upon withdrawal of lactate. Efflux of 86Rb+ was modestly inhibited upon addition of lactate and markedly enhanced by the subsequent withdrawal of lactate from islets. The output of [14C]lactate from islets incubated in the presence of [U-14C]glucose increased linearly with increasing concentrations of glucose (1-25 mM). It is proposed that the activation of islets by the addition or withdrawal of lactate is not due to increased oxidative flux, but occurs as a result of the electrogenic passage of lactate ions across the plasma membrane, resulting in islet-cell depolarization, Ca2+ entry and insulin secretion. The production of lactate via the glycolytic pathway, and the subsequent efflux of lactate from the islet cells with concomitant exchange of H+ for Na+, could be a major determinant of depolarization and hence insulin secretion, in response to glucose.  相似文献   

19.
The effects of an intravenous infusion of porcine GIP on beta-cell secretion in patients with untreated type 2 diabetes mellitus have been studied. The subjects were studied on two separate days. After a 10 h overnight fast and a further 120 min basal period they were given an intravenous infusion of porcine GIP (2 pmol.kg-1.min-1) or control solution in random order from 120-140 min. Frequent plasma glucose, insulin, C-peptide and GIP measurements were made throughout and the study was continued until 200 min. Plasma glucose levels were similar throughout both tests. During the GIP infusion there was an early significant rise in insulin concentration from 0.058 +/- 0.006 nmol/l to 0.106 +/- 0.007 nmol/l (P less than 0.01) within 6 min of commencing the GIP infusion and insulin levels reached a peak of 0.131 +/- 0.011 nmol/l at 10 min (P less than 0.01). Insulin levels remained significantly elevated during the rest of the GIP infusion (P less than 0.01-0.001) and returned to basal values 20 min post infusion. No change in basal insulin values was seen during the control infusion. C-peptide levels were similarly raised during the GIP infusion and the increase was significant just 4 min after commencing the GIP infusion (P less than 0.05). GIP levels increased from 16 +/- 3 pmol/l prior to the infusion to a peak of 286 +/- 24 pmol/l 20 min later. At 4 min when a significant beta-cell response was observed GIP levels were well within the physiological range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigated short-term in vivo and in vitro effects of streptozotocin (STZ) on pancreatic beta cells. Male Wistar rats were treated with 75 mg/kg STZ, and, after 4 hrs blood glucose and insulin were measured and islet cells were isolated, cultured for 16 hrs, and challenged with 5.6 and 15.6 mM glucose. Treated rats showed hyperglycemia (approximately 14 mM) and a 70% decrease in serum insulin levels as compared with controls. Although insulin secretion by isolated beta cells from STZ-treated rats was reduced by more than 80%, in both glucose concentrations, nerve growth factor (NGF) secretion by the same cells increased 10-fold. Moreover, NGF messenger RNA (mRNA) expression increased by 30% as compared with controls. Similar results were obtained in an in vitro model of islet cells, in which cells were exposed directly to STZ for 1, 2, and 4 hrs and then challenged for 3 hrs with the same glucose concentrations. Our data strongly suggest that an early increase in NGF production and secretion by beta cells could be an endogenous protective response to maintain cell survival and that diabetes mellitus may occur when this mechanism is surpassed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号