首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro lipolysis of very low density lipoprotein (VLDL) from normolipidemic and familial dysbetalipoproteinemic plasma by purified bovine milk lipoprotein lipase was studied using the combined single vertical spin and vertical autoprofile method of lipoprotein analysis. Lipolysis of normolipidemic plasma supplemented with autologous VLDL resulted in the progressive transformation of VLDL to low density lipoprotein (LDL) via intermediate density lipoprotein (IDL) with the transfer of the excess cholesterol to high density lipoprotein (HDL). At the end of 60 min lipolysis, 92-96% of VLDL triglyceride was hydrolyzed, and, with this process, greater than 95% of the VLDL cholesterol and 125-I-labeled VLDL protein was transferred from the VLDL to the LDL and HDL density region. When VLDL from the plasma of an individual with familial dysbetalipoproteinemia was substituted for VLDL from normolipidemic plasma, less than 50% of the VLDL cholesterol and 65% of 125I-labeled protein was removed from the VLDL density region, although 84-86% of VLDL triglyceride was lipolyzed. Analysis of familial dysbetalipoproteinemic VLDL fractions from pre- and post-lipolyzed plasma showed that the VLDL remaining in the postlipolyzed plasma (lipoprotein lipase-resistant VLDL) was richer in cholesteryl ester and tetramethylurea-insoluble proteins than that from prelipolysis plasma; the major apolipoproteins in the lipoprotein lipase-resistant VLDL were apoB and apoE. During lipolysis of normolipidemic VLDL containing trace amounts of 125I-labeled familial dysbetalipoproteinemic VLDL, removal of VLDL cholesterol was nearly complete from the VLDL density region, while removal of 125I-labeled protein was only partial. A competition study for lipoprotein lipase, comparing normolipidemic and familial dysbetalipoproteinemic VLDL to an artificial substrate ([3H]triolein), revealed that normolipidemic VLDL is clearly better than familial dysbetalipoproteinemic VLDL in competing for the release of 3H-labeled free fatty acids. The results of this study suggest that, in familial dysbetalipoproteinemic individuals, a subpopulation of VLDL rich in cholesteryl ester, apoB, and apoE is resistant to in vitro conversion by lipoprotein lipase to particles having LDL-like density. The presence of this lipoprotein lipase-resistant VLDL in familial dysbetalipoproteinemic subjects likely contributes to the increased level of cholesteryl ester-rich VLDL and IDL in the plasma of these subjects.  相似文献   

2.
Studies have been conducted on the uptake and metabolism of unesterified oleic acid and lipoprotein triacylglycerol by the perfused rat heart, and of oleic acid, free glycerol and lipoprotein triacylglycerol by rat cardiac myocytes. The perfused heart efficiently extracted and metabolized unesterified fatty acid and the fatty acid released during lipolysis of the recirculating triacylglycerol. The released glyceride glycerol, however, was largely accumulated in the perfusion media. Cardiac myocytes also extracted and rapidly metabolized unesterified fatty acid. As with the intact heart, free glycerol was poorly utilized by cardiac myocytes. Although the cells appeared to extract a small amount of available extracellular triacylglycerol presented as very low density lipoprotein, this was shown to be unmetabolized, suggesting adsorption rather than surface lipolysis and uptake of the released fatty acid. The data suggest that myocytes are unable to metabolize triacylglycerol fatty acids without prior lipolysis by extracellular (capillary endothelial) lipoprotein lipase.  相似文献   

3.
J M Higgins  C J Fielding 《Biochemistry》1975,14(11):2288-2293
The catalytic rate of membrane-supported lipoprotein lipase has been determined for chylomicron and very low density lipoprotein substrates during the formation of triglyceride-depleted ("remnant") particles. Both lipoprotein species and their generated remnant products were competitive substrates for lipase activity. Remnant formation from each species was associated with decreasing kc but an unchanged apparent Km. This finding was confirmed from the rate of plot of total triglyceride catabolism by lipase at low substrate concentrations. When compared with the major very low density lipoprotein fraction (Sf 100-400), a fraction isolated from plasma with a lower flotation rate (Sf 40-100) had a lipid composition and decreased kc compatible with this representing a physiological remnant particle.  相似文献   

4.
Lipolysis of human very low density lipoproteins (VLDL) by lipoprotein lipase (LPL) was inhibited in the presence of high density lipoproteins (HDL), anti-apolipoprotein (apo) CII, and by increasing the VLDL free cholesterol content but not with anti-apo CIII or lipoprotein-free plasma. The experiments lend direct evidence that the composition of VLDL and their milieu are important determinants of lipolysis by LPL. Apo CIII may not be critical in LPL mediated VLDL catabolism.  相似文献   

5.
Hepatic lipase deficiency produces significant distortion in the plasma lipoprotein profile. Particles with reduced electrophoretic mobility appear in very low density lipoprotein (VLDL). Intermediate density lipoprotein (IDL) increases markedly in the circulation and plasma low density lipoprotein (LDL) levels fall. At the same time there is a mass redistribution within the high density lipoprotein (HDL) spectrum leading to dominance in the less dense HDL2 subfraction. The present study examines apolipoprotein B turnover in a patient with hepatic lipase deficiency. The metabolism of large and small very low density lipoproteins was determined in four control subjects and compared to the pattern seen in the patient. Absence of the enzyme did not affect the rate at which large very low density lipoproteins were converted to smaller particles within this density interval (i.e., of VLDL). However, subsequent transfer of small very low density lipoproteins to intermediate density particles was retarded by 50%, explaining the abnormal accumulation of VLDL in the patient's plasma. Despite this, intermediate density particles accumulated to a level 2.4-times normal because their subsequent conversion to low density lipoprotein has been almost totally inhibited. Consequently, the plasma concentration of low density lipoprotein was only 10% of normal. On the basis of these observations, hepatic lipase appears to be essential for the conversion of small very low density and intermediate density particles to low density lipoproteins. The pathways of direct plasma catabolism of these species were not affected by the enzyme defect. In vitro studies were performed by adding purified hepatic lipase to the patient's plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Factors affecting the association of apolipoprotein E (apoE) with human plasma very low density lipoprotein (VLDL) were investigated in experiments in which the lipid content of the lipoprotein was modified either by lipid transfer in the absence of lipolysis or through the action of lipoprotein lipase. In both cases, lipoprotein particles initially containing no apoE (VLDL-E), isolated by heparin affinity chromatography, were modified until they had the same lipid composition as native apoE-containing VLDL (VLDL+E) from the same plasma. Transfer-modified lipoproteins, unlike native VLDL+E, did not bind apoE or interact with heparin. In contrast, VLDL-E, whose lipid composition was modified to the same extent by lipase, bound apoE and bound to heparin under the same conditions as native VLDL+E. A structural protein (apolipoprotein B) epitope characteristic of VLDL+E was expressed during lipolysis prior to ApoE or heparin binding. The data suggest that the reaction of apoE with VLDL-E is a two-step reaction. The appearance of apoB is modified during lipolysis, with expression of a major heparin-binding site. The modified VLDL then becomes competent to bind apoE. The lipid composition of VLDL appears not to be a major factor in the ability of VLDL to bind apoE or to bind to heparin.  相似文献   

7.
We investigated the metabolism by hepatocyte suspensions of the acylglycerols in lipoprotein remnants as well as those associated with albumin and low or high density lipoproteins. Remnants, albumin and plasma lipoproteins, rich in monoacylglycerol were prepared by short-term incubations of radio-labeled chylomicra or very low density lipoproteins with extrahepatic lipoprotein lipase in the presence of albumin and low and high density lipoproteins. We demonstrated that liver parenchymal cells contain an active monoacylglycerol acyltransferase that is located on the extracellular surface of the cell plasma membrane. Further, the enzyme is capable of degrading the monoacylglycerol in all the above forms. Triacylglycerol in intact chylomicra and very low density lipoproteins were not metabolized by the cells to any appreciable degree. The degradation of the remnant triacylglycerol appeared to depend solely on the activity of the lipoprotein lipase bound to the lipoprotein remnants. Little uptake of intact lipoprotein acylglycerols by the hepatocytes was observed; instead, hydrolysis of the substrates in the medium always preceded the uptake of the products. The products were then utilized for the synthesis of triacylglycerol and phospholipid within the cells.  相似文献   

8.
Rats fed a diet deficient in essential fatty acids have a low level of serum very low density lipoproteins (VLDL). It was found that after intraperitoneal injection of heparin, deficient rats had a higher level of lipoprotein lipase activity in their plasma than did normal rats. VLDL isolated from serum of normal and deficient rats were compared as substrates for postheparin lipase of rat plasma. There was no significant difference in V(max) between the two preparations of lipoproteins, but the apparent K(m) for lipoproteins from deficient animals was significantly less than that for normal animals. These observations suggest that the low concentration of VLDL in deficient rats may be explained (a) by an increased activity of lipoprotein lipase in the tissues of these animals and (b) by the VLDL of deficient rats being more rapidly hydrolyzed at low concentrations by lipoprotein lipase than VLDL from normal rats.  相似文献   

9.
The hydrolysis of glycerophospholipids in very low density lipoprotein by enzyme(s) released into circulation after the injection of heparin to rats was studied. [32P]Lysolecithin was formed rapidly from [32P]lecithin when very low density lipoprotein, labeled biosynthetically with 32P, was incubated with postheparin plasma. The [32P]lysolecithin was associated with the plasma protein fraction of density greater than 1.21 g/ml, whereas [32P]lecithin exchanged between very low and high density lipoproteins. Inhibition of the plasma lecithin: cholesterol acyl transferase activity did not change the excess [32P]lysolecithin formation in postheparin plasma, and only a negligible amount of radioactivity was associated with blood cells when the incubation was repeated in whole blood. Analysis of the results has demonstrated that phospholipids are removed from VLDL by two pathways: hydrolysis of glycerophospholipids by the heparin-releasable phospholipase activity (greater than50%) and transfer to high density lipoproteins (less than50%). The tissue origin of the postheparin phospholipase was studied in plasma obtained from intact rats and supradiaphragmatic rats using specific inhibitors of the extrahepatic lipase system (protamine sulfate and 0.5 M NaCl). The phospholipase activity could be ascribed to both the hepatic and extrahepatic lipase systems. It is concluded that hydrolysis of glycerophospholipids is the major mechanism responsible for the removal of phospholipids from very low density lipoprotein during the degradation of the lipoprotein. It is suggested that phospholipid hydrolysis occurs concomitantly with triglyceride hydrolysis, predominantly in extrahepatic tissues.  相似文献   

10.
Rabbit antiserum was prepared against purified bovine mild lipoprotein lipase. Immunoelectrophoresis of lipoprotein lipase gave a single precipitin line against the antibody which was coincident with enzyme activity. The gamma-globulin fraction inhibited heparin-releasable lipoprotein lipase activity of bovine arterial intima, heart muscle and adipose tissue. The antibody also inhibited the lipoprotein lipase activity from adipose tissue of human and pig, but not that of rat and dog. Fab fragments were prepared by papain digestion of the gamma-globulin fraction. Fab fragments inhibited the lipoprotein lipase-catalyzed hydrolysis of dimyristoylphosphatidylcholine vesicles and trioleoylglycerol emulsions to the same extent. The Fab fragments also inhibited the lipolysis of human plasma very low density lipoproteins. The change of the kinetic parameters for the lipoprotein lipase-catalyzed hydrolysis of trioleoylglycerol by the Fab fragments was accompanied with a 3-fold increase in Km and a 10-fold decrease in Vmax. Preincubation of lipoprotein lipase with apolipoprotein C-II, the activator protein for lipoprotein lipase, did not prevent inhibition of enzyme activity by the Fab fragments. However, preincubation with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol or Triton X-100-emulsified trioleoylglycerol had a protective effect (remaining activity 7.0 or 25.8%, respectively, compared to 1.0 or 0.4% with no preincubation). The addition of both apolipoprotein C-II and substrate prior to the incubation with the Fab fragments was associated with an increased protective effect against inhibition of enzyme activity; remaining activity with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol was 40.6% and with Triton X-100-emulsified trioleoylglycerol, 45.4%. Human plasma very low density lipoproteins also protected against the inhibition of enzyme activity by the Fab fragments. These immunological studies suggest that the interaction of lipoprotein lipase with apolipoprotein C-II in the presence of lipids is associated with a conformational change in the structure of the enzyme such that the Fab fragments are less inhibitory. The consequence of a conformational change in lipoprotein lipase may be to facilitate the formation of an enzyme-triacylglycerol complex so as to enhance the rate of the lipoprotein lipase-catalyzed turnover of substrate to products.  相似文献   

11.
Two lines of transgenic mice, hAIItg-delta and hAIItg-lambda, expressing human apolipoprotein (apo)A-II at 2 and 4 times the normal concentration, respectively, displayed on standard chow postprandial chylomicronemia, large quantities of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) but greatly reduced high density lipoprotein (HDL). Hypertriglyceridemia may result from increased VLDL production, decreased VLDL catabolism, or both. Post-Triton VLDL production was comparable in transgenic and control mice. Postheparin lipoprotein lipase (LPL) and hepatic lipase activities decreased at most by 30% in transgenic mice, whereas adipose tissue and muscle LPL activities were unaffected, indicating normal LPL synthesis. However, VLDL-triglyceride hydrolysis by exogenous LPL was considerably slower in transgenic compared with control mice, with the apparent Vmax of the reaction decreasing proportionately to human apoA-II expression. Human apoA-II was present in appreciable amounts in the VLDL of transgenic mice, which also carried apoC-II. The addition of purified apoA-II in postheparin plasma from control mice induced a dose-dependent decrease in LPL and hepatic lipase activities. In conclusion, overexpression of human apoA-II in transgenic mice induced the proatherogenic lipoprotein profile of low plasma HDL and postprandial hypertriglyceridemia because of decreased VLDL catabolism by LPL.  相似文献   

12.
Recirculating organ perfusion in vitro was conducted with hearts from control rats, animals given a single dose of streptozotocin (65 mg/kg) 48 h earlier, and streptozotocin-treated rats administered insulin (5 units), 2 h prior to organ perfusion. During 45-min perfusions, the lipolysis of very low density lipoprotein (VLDL) triglyceride was significantly less in hearts from diabetics than in controls (41.9 +/- 7.3% of control). This was associated with significant reductions in heparin-releasable (functional) lipoprotein lipase and tissue lipoprotein lipase of perfused hearts. The decreases in VLDL triglyceride metabolism and the levels of myocardial lipoprotein lipase were completely reversed by treatment of diabetic rats with insulin 2 h prior to study. Similar improvement of VLDL triglyceride metabolism and increases in myocardial lipoprotein lipase activity were observed in hearts from diabetic rats by direct addition of 100 milliunits/ml of insulin to the recirculating perfusion media. Under these conditions, the increase in both fractions of lipoprotein lipase in response to insulin was completely inhibited, and utilization of VLDL triglyceride was partially inhibited by pre-perfusion with cycloheximide for 10 min. The data derived from either VLDL triglyceride lipolysis in organ perfusion or direct measurement of myocardial lipoprotein lipase demonstrate a direct effect of insulin on myocardial lipoprotein lipase activity, and suggest that the response to insulin may be due in part to effects on protein synthesis.  相似文献   

13.
Human fibroblast cells in culture increased their intracellular triacylglycerol levels when exposed to very low density lipoproteins (VLDL) isolated from human plasma. This response was dependent on the amount of VLDL added. VLDL from normal, type IV or type V sera gave similar results. Lipoprotein lipase enhanced this intracellular triacylglycerol accumulation. It was concluded that human fibroblast cells in culture have at least two mechanisms for triacylglycerol uptake from VLDL: (1) uptake from intact lipoprotein either by surface transfer of lipoprotein lipid or internalization of the entire lipoprotein particle, and (2) re-esterification of lower glyceride and fatty acids released by lipoprotein lipase degradation of VLDL.  相似文献   

14.
The fate of apo C in rat plasma very low density lipoprotein (VLDL) during lipolysis was studied using VLDL labeled specifically with 125I-labeled apo C and purified bovine milk lipoprotein lipase. Incubations were carried out in vitro and included serum-containing systems and albumin containing systems. Free fatty acids generation proceeded with time of incubation in the two systems. It, however, was enhanced 1.5--2 fold by the presence of serum. 125I-labeled apo C equilibrated between very low and high density lipoprotein (HDL) in both systems even when enzyme was not present in the incubation medium, or when the incubation was carried out at 0 degrees C. Upon initiation of lipolysis, more 125I-labeled apo C was transferred to HDL and the transfer was proportional to the magnitude of free fatty acids release. 125I-labeled apo C was also progressively removed from VLDL in the albumin-containing system, although no known lipoprotein acceptor to apo C was present in the medium. The 125I-labeled apo C was recovered predominantly with the medium fraction of d greater than 1.21 g/ml (60--70%), and to a lesser degree with that of d= 1.019--1.21 g/ml. However, the relationship between lipolysis (measured as free fatty acids release) and removal of 125I-labeled apo C from VLDL were indistinguinshable in the albumin containing system and the serum containing system. On the basis of these observations, it is postulated that the removal of apo C during lipolysis of VLDL reflects the nature of the partially degraded VLDL particles, and is independent of the presence of a lipoprotein acceptor to apo C.  相似文献   

15.
Lecithin-cholesterol acyltransferase deficiency is frequently associated with hypertriglyceridemia (HTG) in animal models and humans. We investigated the mechanism of HTG in the ldlr-/- x lcat-/- (double knockout (dko)) mice using the ldlr-/- x lcat+/+ (knock-out (ko)) littermates as control. Mean fasting triglyceride (TG) levels in the dko mice were elevated 1.75-fold compared with their controls (p < 0.002). Both the very low density lipoprotein and the low density lipoprotein/intermediate density lipoprotein fractions separated by fast protein liquid chromatography were TG-enriched in the dko mice. In vitro lipolysis assay revealed that the dko mouse very low density lipoprotein (d < 1.019 g/ml) fraction separated by ultracentrifugation was a more efficient substrate for lipolysis by exogenous bovine lipoprotein lipase. Post-heparin lipoprotein lipase activity was reduced by 61% in the dko mice. Hepatic TG production rate, determined after intravenous Triton WR1339 injection, was increased 8-fold in the dko mice. Hepatic mRNA levels of sterol regulatory element binding protein-1 (srebp-1) and its target genes acetyl-CoA carboxylase-1 (acc-1), fatty acid synthase (fas), and stearoyl-CoA desaturase-1 (scd-1) were significantly elevated in the dko mice compared with the ko control. The hepatic mRNA levels of LXRalpha (lxralpha) and its target genes including angiopoietin-like protein 3 (angptl-3) in the dko mice were unchanged. Fasting glucose and insulin levels were reduced by 31 and 42%, respectively in the dko mice, in conjunction with a 49% reduction in hepatic pepck-1 mRNA (p = 0.014). Both the HTG and the improved fasting glucose phenotype seen in the dko mice are at least in part attributable to an up-regulation of the hepatic srebp-1c gene.  相似文献   

16.
In recent years, it has been established that lipoprotein lipase (LPL) is partly associated with circulating lipoproteins. This report describes the effects of physiological amounts of very low density lipoprotein (VLDL)-bound LPL on the cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester transfer (CET) from high density lipoprotein (HDL) to VLDL. Three patients with severe LPL deficiency exhibited a strong decrease in net mass CET that was more than 80% lower than that of common hypertriglyceridemic subjects. Recombination experiments showed that this was due to an abnormal behavior of the VLDL fraction. Replacement of the latter by normal VLDL totally normalized net mass CET. We therefore prepared VLDL containing controlled amounts of bound LPL that we used as CE acceptors in experiments involving unidirectional radioisotopic CET measurements. These were carried out either in the absence or in the presence of inhibitors of LPL lipolytic activity. When LPL-induced lipolysis was totally blocked, the stimulating effect of the enzyme on the CETP-dependent CET was only reduced by about 50%, showing that it did not entirely result from its lipolytic action. These data were dependent upon neither the type of LPL inhibitor (E600 or THL) nor the source of CETP (delipidated plasma or partially purified CETP). Thus, in addition to the well-known stimulating effect of LPL-dependent lipolysis on CET, our work demonstrates that physiological amounts of VLDL-bound LPL may facilitate CET through a mechanism partially independent of its lipolytic activity.  相似文献   

17.
18.
The structure and the metabolism of plasma lipoproteins are altered in diabetes mellitus. Insulin or oral agent treatments affect the lipoprotein metabolism in addition to improving hyperglycemia. However, it is not clear whether the alterations seen in lipoproteins during treatment are related to the degree of diabetic control or to the mode of diabetic treatment. The effects of insulin or oral agent treatments on the plasma lipoproteins and lipoprotein lipase activator were compared in a strictly defined non-obese, non-insulin dependent diabetic patient. Both treatment groups had similar plasma triglyceride, total cholesterol, low and high density lipoprotein cholesterol, and lipoprotein lipase activator levels. Lipoprotein lipase activator contents of the very low density lipoproteins correlated positively with their triglyceride (r = 0.803 in insulin, r = 0.828 in oral agent treated patients) and protein (r = 0.713 in insulin, r = 0.862 in oral agent treated patients) contents. The findings of this study indicated that plasma lipid levels, very low density lipoprotein compositions, and lipoprotein lipase activator contents were not significantly different in non-obese, non-insulin dependent diabetic patients treated with either oral hypoglycemic agents or insulin.  相似文献   

19.
20.
The possibility that impaired removal of lipoprotein triglyceride from the circulation may be a participating factor in the hypertriglyceridemia of the obese Zucker rat was examined. We found no significant differences in the heparin-released lipoprotein lipase (LPL) activities of the adipose tissue, skeletal muscle, and heart (expressed per gram of tissue) from the lean and obese Zucker rats. Furthermore, the kinetic properties of adipose tissue and heart LPL from the lean and obese rats were similar, indicating that the catalytic efficiency of the enzyme was unaltered in the obese animals. The postheparin plasma LPL activities of lean and obese rats were also similar. However, the postheparin plasma hepatic triglyceride lipase (H-TGL) activity in the obese rats was elevated. The higher activity of H-TGL could not alleviate the hypertriglyceridemia in these animals. Since hypertriglyceridemia in the obese rats could also be due to the hepatic production of triglyceride-rich lipoproteins which are resistant to lipolysis, we therefore isolated very low density lipoproteins (VLDL) from lean and obese rat liver perfusates and examined their degradation by highly purified human milk LPL. Although certain differences were observed in hepatic VLDL triglyceride fatty acid composition, the kinetic patterns of LPL-catalyzed triglyceride disappearance from lean and obese rat liver perfusate VLDL were similar. The isolated liver perfusate VLDL contained sufficient apolipoprotein C-II for maximum lipolysis. These results indicate that impaired lipolysis is not a contributing factor in the genesis of hypertriglyceridemia in the genetically obese Zucker rat. The hyperlipemic state may be attributed to hypersecretion of hepatic VLDL and consequent saturation of the lipolytic removal of triglyceride-rich lipoproteins from the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号