首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
J M Higgins  C J Fielding 《Biochemistry》1975,14(11):2288-2293
The catalytic rate of membrane-supported lipoprotein lipase has been determined for chylomicron and very low density lipoprotein substrates during the formation of triglyceride-depleted ("remnant") particles. Both lipoprotein species and their generated remnant products were competitive substrates for lipase activity. Remnant formation from each species was associated with decreasing kc but an unchanged apparent Km. This finding was confirmed from the rate of plot of total triglyceride catabolism by lipase at low substrate concentrations. When compared with the major very low density lipoprotein fraction (Sf 100-400), a fraction isolated from plasma with a lower flotation rate (Sf 40-100) had a lipid composition and decreased kc compatible with this representing a physiological remnant particle.  相似文献   

3.
The precursor-product relationship of very low density (VLDL) and low density lipoproteins (LDL) was studied. VLDL obtained from normal (NTG) and hypertriglyceridemic (HTG) subjects was fractionated by zonal ultracentrifugation and subjected to in vitro lipolysis. The individual subfractions and their isolated lipolysis products, as well as IDL and LDL, were rigorously characterized. A striking difference in the contribution of cholesteryl ester to VLDL is noted. In NTG subfractions, the cholesteryl ester to protein ratio increases with decreasing density (VLDL-I----VLDL-III). This is the expected result of triglyceride loss through lipolysis and cholesteryl ester gain through core-lipid transfer protein action. In HTG subfractions there is an abnormal enrichment of cholesteryl esters that is most marked in VLDL-I and nearly absent in VLDL-III. Thus, the trend of the cholesteryl ester to protein ratios is reversed, being highest in HTG-VLDL-I and lowest in VLDL-III. This is incompatible with the precursor-product relationship described by the VLDL----IDL----LDL cascade. In vitro lipolysis studies support the conclusion that not all HTG-VLDL can be metabolized to LDL. While all NTG subfractions yield products that are LDL-like in size, density, and composition, only HTG-VLDL-III, whose composition is most similar to normal, does so. HTG VLDL-I and VLDL-II products are large and light populations that are highly enriched in cholesteryl ester. We suggest that this abnormal enrichment of HTG-VLDL with cholesteryl ester results from the prolonged action of core-lipid transfer protein on the slowly metabolized VLDL mass. This excess cholesteryl ester load, unaffected by the process of VLDL catabolism, remains entrapped within the abnormal particle. Therefore, lipolysis yields an abnormal, cholesteryl ester-rich product that can never become LDL.  相似文献   

4.
Perfusion of homologous 125I-labeled rat very low density lipoprotein through isolated rat lungs in the presence of heparin resulted in apoprotein proteolysis. At least the apoprotein C was degraded into two peptides smaller than 7500 daltons as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lung uptake of radioactivity was small and due mainly to the presence of the larger of the two peptides. The lung protease was not active against an 125-I-labeled albumin substrate and was not released into the medium by heparin.  相似文献   

5.
Egg yolk very low density lipoprotein contained on the average 75% of lipid which could be extracted by ether and 25% of a residual lipoprotein, the classical lipovitellenin. The ether-extracted lipid was composed of 75% triglycerides, 7% sterols, 2% mono- and diglycerides, and 16% phospholipids. Lipovitellenin contained 48% lipid composed of 87% phospholipids, 11% triglycerides, and 2% sterols. The protein vitellenin was composed for the most part of units of 74,000 and 270,000 daltons molecular weight.Egg yolk very low density lipoprotein is polydisperse. Preparative ultracentrifugation separated it into six fractions of different average molecular size, and gel chromatography separated it into five. The fractions of larger molecular size contained more lipid and triglyceride than did the fractions of smaller molecular size. The proteins of the fractions appeared to be similar.Egg yolk very low density lipoproteins appear to be a series of molecules composed of cores of lipid of varying sizes with each core surrounded by a layer of lipovitellenin, which is composed principally of glycoprotein and phospholipid.  相似文献   

6.
7.
Transfer of apolipoprotein (apo) molecules between lipoprotein particles is an important factor in modulating the metabolism of the particles. Although the phenomenon is well established, the kinetics and molecular mechanism of passive apo exchange/transfer have not been defined in detail. In this study, the kinetic parameters governing the movement of radiolabeled apoC molecules from human very low density lipoprotein (VLDL) to high density lipoprotein (HDL3) particles were measured using a manganese phosphate precipitation assay to rapidly separate the two types of lipoprotein particles. In the case of VLDL labeled with human [14C]apoCIII1, a large fraction of the apoCIII1 transfers to HDL3 within 1 minute of mixing the two lipoproteins at either 4 degrees or 37 degrees C. As the diameter of the VLDL donor particles is decreased from 42-59 to 23-25 nm, the size of this rapidly transferring apoCIII1 pool increases from about 50% to 85%. There is also a pool of apoCIII1 existing on the donor VLDL particles that transfers more slowly. This slow transfer follows a monoexponential rate equation; for 35-40 nm donor VLDL particles the pool size is approximately 20% and the t1/2 is approximately 3 h. The flux of apoCIII molecules between VLDL and HDL3 is bidirectional and all of the apoCIII seems to be available for exchange so that equilibrium is attained. It is likely that the two kinetic pools of apoCIII are related to conformational variations of individual apo molecules on the surface of VLDL particles. The rate of slow transfer of apoCIII1 from donor VLDL (35-40 nm) to acceptor HDL3 is unaffected by an increase in the acceptor to donor ratio, indicating that the transfer is not dependent on collisions between donor and acceptor particles. Consistent with this, apoCIII1 molecules can transfer from donor VLDL to acceptor HDL3 particles across a 50 kDa molecular mass cutoff semipermeable membrane separating the lipoprotein particles. These results indicate that apoC molecules transfer between VLDL and HDL3 particles by an aqueous diffusion mechanism.  相似文献   

8.
9.
The plasma decay of three groups of iodinated apoproteins on human very low density lipoproteins were evauluated in two normals, two subjects with endogenous hypertriglyceridemia and another two with dysbetalipoproteinemia. The apo beta decay was more rapid than that of the C apoproteins in all patients. The apo beta decay was more rapid for the normals than for either the subjects with hypertriglyceridemia or dysbetalipoprotenemia. The apo C protein had an irregular decay in the normals but decayed less irregularly for the hypertriglyceridemics. The arginine rich apoprotein had a decay somewhat similar to apo C protein in the normals. The apo beta protein of the alpha2 very low density lipoprotein of a dysbetalipoproteinemic was consistent with a precursor relationship to the apo beta of beta very low density lipoprotein of this subject, but the arginine rich apoprotein was not.  相似文献   

10.
The cause of corticosteroid-induced hyperlipoproteinemia was studied in rats and mice. An ultrastructural morphometric method was utilized to demonstrate alterations in hepatocyte very low density lipoprotein content, and Triton WR 1339-treated rats were used to identify changes in the removal of very low density lipoproteins from plasma. The results show that corticosteroid treatment results in (1) an increase in both plasma triglyceride and cholesterol levels, (2) an increase in rate of accumulation of triglyceride after inhibition of very low density lipoprotein removal by Triton, and (3) an increase in the number and size of Golgi-associated very low density lipoprotein particles in hepatocytes. These combined results suggest that corticosteroids induce hyperlipoproteinemia through increased hepatic production of very low density lipoproteins.  相似文献   

11.
We have demonstrated that low and high density lipoproteins from monkey plasma are capable of accepting and accumulating monoacylglycerol that is formed by the action of lipoprotein lipase on monkey lymph very low density lipoproteins. Furthermore, the monoacylglycerol that accumulates in both low and high density lipoproteins is not susceptible to further hydrolysis by lipoprotein lipase but is readily degraded by the monoacylglycerol acyltransferase of monkey liver plasma membranes. These observations suggest a new mechanism for monoacylglycerol transfer from triacylglycerol rich lipoproteins to other lipoproteins. In addition, the finding that monoacylglycerol bound to low and high density lipoprotein is degraded by the liver enzyme but not lipoprotein lipase lends support to the hypothesis that there are distinct and consecutive extrahepatic and hepatic stages in the metabolism of triacylglycerol in plasma lipoproteins.  相似文献   

12.
The lipid substrate specificity of Manduca sexta lipid transfer particle (LTP) was examined in in vitro lipid transfer assays employing high density lipophorin and human low density lipoprotein (LDL) as donor/acceptor substrates. Unesterified cholesterol was found to exchange spontaneously between these substrate lipoproteins, and the extent of transfer/exchange was not affected by LTP. By contrast, transfer of labeled phosphatidylcholine and cholesteryl ester was dependent on LTP in a concentration-dependent manner. Facilitated phosphatidylcholine transfer occurred at a faster rate than facilitated cholesteryl ester transfer; this observation suggests that either LTP may have an inherent preference for polar lipids or the accessibility of specific lipids in the donor substrate particle influences their rate of transfer. The capacity of LDL to accept exogenous lipid from lipophorin was investigated by increasing the high density lipophorin:LDL ratio in transfer assays. At a 3:1 (protein) ratio in the presence of LTP, LDL became turbid (and aggregated LDL were observed by electron microscopy) indicating LDL has a finite capacity to accept exogenous lipid while maintaining an overall stable structure. When either isolated human non B very low density lipoprotein (VLDL) apoproteins or insect apolipophorin III (apoLp-III) were included in transfer experiments, the sample did not become turbid although lipid transfer proceeded to the same extent as in the absence of added apolipoprotein. The reduction in sample turbidity caused by exogenous apolipoprotein occurred in a concentration-dependent manner, suggesting that these proteins associate with the surface of LDL and stabilize the increment of lipid/water interface created by LTP-mediated net lipid transfer. The association of apolipoprotein with the surface of modified LDL was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, and scanning densitometry revealed that apoLp-III bound to the surface of LDL in a 1:14 apoB:apoLp-III molar ratio. Electron microscopy showed that apoLp-III-stabilized modified LDL particles have a larger diameter (29.2 +/- 2.6 nm) than that of control LDL (22.7 +/- 1.9 nm), consistent with the observed changes in particle density, lipid, and apolipoprotein content. Thus LTP-catalyzed vectorial lipid transfer can be used to introduce significant modifications into isolated LDL particles and provides a novel mechanism whereby VLDL-LDL interrelationships can be studied.  相似文献   

13.
Oxidation of lipids in low density lipoprotein particles   总被引:2,自引:0,他引:2  
This study was undertaken to understand further the mechanisms and dynamics of the oxidation of lipids in low density lipoprotein (LDL) particles, aiming specifically at elucidating the material balance between oxygen uptake and products found and also the relative susceptibilities to oxidation of cholesteryl ester in the core and phosphatidylcholine in the outer monolayer in the LDL particles. It was found that considerable amount of oxygen uptake could not be accounted for by conjugated diene or total peroxides. Total peroxide was measured from the phosphine oxide formed from triphenylphosphine or diphenylpyrenylphosphine by reduction of peroxides. Cholesteryl ester hydroperoxides and phosphatidylcholine hydroperoxides were the major peroxides formed in LDL oxidation, but they accounted for about 60% of total peroxide. Cholesterol was also oxidized, but its oxidation was significant only at the later stages of the reaction. It was also found that the oxidizability of cholesteryl ester relative to phosphatidylcholine was larger within the LDL particle than in homogeneous solution and this was interpreted in the context of the physical properties of LDL particle.  相似文献   

14.
Remnant lipoprotein particles, produced by in vitro lipolysis of 125I-labeled very low density lipoproteins with lipoprotein lipase-rich plasma are avidly taken up but poorly catabolized by rat aortic smooth muscle cells growing in culture. These results may be relevant to the known association between high circulating remnant concentration and accelerated atherosclerosis.  相似文献   

15.
16.
We demonstrate here that hepatic triglyceride lipase (HTGL) enhances VLDL degradation in cultured cells by a LDL receptor-mediated mechanism. VLDL binding at 4 degrees C and degradation at 37 degrees C by normal fibroblasts was stimulated by HTGL in a dose-dependent manner. A maximum increase of up to 7-fold was seen at 10 microg/ml HTGL. Both VLDL binding and degradation were significantly increased (4-fold) when LDL receptors were up-regulated by treatment with lovastatin. HTGL also stimulated VLDL degradation by LDL receptor-deficient FH fibroblasts but the level of maximal degradation was 40-fold lower than in lovastatin-treated normal fibroblasts. A prominent role for LDL receptors was confirmed by demonstration of similar HTGL-promoted VLDL degradation by normal and LRP-deficient murine embryonic fibroblasts. HTGL enhanced binding and internalization of apoprotein-free triglyceride emulsions, however, this was LDL receptor-independent. HTGL-stimulated binding and internalization of apoprotein-free emulsions was totally abolished by heparinase indicating that it was mediated by HSPG. In a cell-free assay HTGL competitively inhibited the binding of VLDL to immobilized LDL receptors at 4 degrees C suggesting that it may directly bind to LDL receptors but may not bind VLDL particles at the same time.We conclude that the ability of HTGL to enhance VLDL degradation is due to its ability to concentrate lipoprotein particles on HSPG sites on the cell surface leading to LDL receptor-mediated endocytosis and degradation.  相似文献   

17.
We determined the effects of varying the types and level of dietary fat and cholesterol on the increase in plasma total triacylglycerol concentrations after injection of Triton WR-1339, an inhibitor of lipoprotein lipase, into monkeys that had been subjected to an overnight fast. The monkeys that had been treated with Triton WR-1339 were then given a test meal by intragastric intubation. Dietary cholesterol, high levels of fat and saturated fat in the habitual diet reduced the rate of release of triacylglycerol to plasma in the fasted monkey. We also determined the changes in protein and lipid concentrations of the different lipoprotein fractions. The injection of Triton WR-1339 resulted in a linear increase with time in the concentration of protein and triacylglycerol in the very low density (chylomicron-free and d less than 1.006) lipoproteins, but there was an increase in the ratio of traicylglycerol to protein in that fraction. Most of the increase (96%) in very low density protein was in the B protein. Regardless of the habitual diet, a test meal accentuated the rate of triacylglycerol appearance in whole plasma and in the very low density lipoproteins of Triton WR-1339-treated monkeys, and the rate of increase of the protein component after feeding was slightly higher. Thus the administration of a meal to the fasted Triton WR-1339-treated squirrel monkey further increased the proportion of triacylglycerol in very low density lipoproteins. Although dietary cholesterol and saturated fat in the habitual diet depressed the rate of increase in very low density triacylglycerol during fasting, the rate of protein synthesis was not significantly affected. After administration of a test meal the rates of increase in triacylglycerol and protein in the very low density lipoproteins were similar for monkeys from the different diet groups. Triton WR-1339 administration caused a slight and progressive increase in the intermediate density (d 1.006-1.019) lipoproteins and a marked and progressive decrease in the low density (d 1.019-1.063) lipoproteins. There was an immediate (by 5 min) drop of 70% or more in high density (d 1.063-1.21) lipoprotein protein, but the lipids except triacylglycerol remained unchanged. There was a decrease in both the A (the major fraction) and C proteins. The rates of very low density B protein secretion were comparable to the rates of low density lipoprotein catabolism that had been previously demonstrated for this species.  相似文献   

18.
19.
The formation of low density lipoprotein (LDL) from very low density lipoprotein (VLDL) was studied after injecting 14C-radiomethylated or 125I-radioiodinated VLDL into rats. VLDL and LDL B apoprotein specific radioactivity time curves were obtained after tetramethylurea extraction of the lipoproteins. In all experiments, the specific activity of LDL B apoprotein did not intercept the VLDL curve at maximal heights, suggesting that not all LDL B apoprotein is derived from VLDL B apoprotein. Further subfractionation of LDL into the Sf 12-20, 5-12, and 0-5 ranges showed that most (65%) LDL B apoprotein was present in the Sf 0-5 fraction and that only a small proportion (6-15%) of this fraction was derived from VLDL. However, the curves obtained for the Sf 12-20 and 5-12 subfractions were consistent with a precursor-product relationship in which all of these fractions were derived entirely from VLDL catabolism. These results contrasted strikingly with similar data obtained for normal humans in which all LDL is derived from VLDL. In the rat, it appears that most of the B apoprotein in the Sf 0-5 range, which contains 65% of the total LDL B apoprotein, enters the plasma independently of VLDL secretion.  相似文献   

20.
We have examined the apoprotein structure of human very low density lipoprotein (VLDL) and two subfractions of human low density lipoproteins, LDL-2 (d 1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号