首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of bioactive interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, is mediated by activated caspase-1. One of the known molecular mechanisms underlying pro-caspase-1 processing and activation involves interaction between the caspase recruit domains (CARDs) of caspase-1 and a serine/threonine kinase RIP2. While the association of Nod1 with both caspase-1 and RIP2 is already known, the consequences of these interactions are poorly understood. Because Nod1 also binds to RIP2, we hypothesized that Nod1 plays a role in pro-caspase-1 activation and IL-1beta processing. We show here that Nod1 binds to both RIP2 and caspase-1 by CARD interactions. Nod1 enhances pro-caspase-1 oligomerization and pro-caspase-1 processing. Nod1 enhances caspase-1-induced IL-1beta secretion, as well as lipopolysaccharide (LPS)-induced IL-1beta secretion in transfected cells. Moreover, HT1080 cells stably transfected with Nod1 showed higher LPS-induced IL-1beta secretion than non-transfected cells, suggesting a role of Nod1 in LPS-induced responses. Our data indicate that Nod1 can regulate IL-1beta secretion, implying that Nod1 may play a role in inflammatory responses to bacterial LPS.  相似文献   

2.
Caspase 8 plays a dual role in the survival of T lymphocytes. Although active caspase 8 mediates apoptosis upon death receptor signaling, the loss of caspase 8 activity leads to receptor-interacting protein (RIP)-1/RIP-3-dependent necrotic cell death (necroptosis) upon TCR activation. The anti-apoptotic protein c-FLIP (cellular caspase 8 (FLICE)-like inhibitory protein) suppresses death receptor-induced caspase 8 activation. Moreover, recent findings suggest that c-FLIP is also involved in inhibiting necroptosis and autophagy. It remains unclear whether c-FLIP protects primary T lymphocytes from necroptosis or regulates the threshold at which autophagy occurs. Here, we used a c-FLIP isoform-specific conditional deletion model to show that c-FLIPL-deficient T cells underwent RIP-1-dependent necroptosis upon TCR stimulation. Interestingly, although previous studies have only described necroptosis in the absence of caspase 8 activity, we found that pro-apoptotic caspase 8 activity and apoptosis were also enhanced in c-FLIPL-deficient T lymphocytes. Furthermore, c-FLIPL-deficient T cells exhibited enhanced autophagy, which served a cytoprotective function. Together, these findings indicate that c-FLIPL plays an important antinecroptotic role and is a key regulator of apoptosis, autophagy, and necroptosis in T lymphocytes.  相似文献   

3.
Elucidating factors regulating Crohn's disease-associated nucleotide-binding oligomerization domain 2 (Nod2) responses is critical to understanding the mechanisms of intestinal immune homeostasis. Stimulation of primary monocyte-derived macrophages by muramyl dipeptide (MDP), a component of bacterial peptidoglycan and specific Nod2 ligand, produces cytokines, including IL-1β. We found that IL-1β blockade profoundly inhibits MDP-induced cytokine production in human monocyte-derived macrophages, demonstrating a key role for IL-1β autocrine secretion in Nod2-mediated responses. Importantly, although MAPK activation has previously been attributed directly to Nod2 signaling, we determined that the IL-1β autocrine loop is responsible for the majority of MDP-induced MAPK activation. Because the critical effects of IL-1β autocrine secretion on MAPK activation are observed as early as 10 min after Nod2 stimulation, we hypothesized that secretion of IL-1β from preexisting intracellular pro-IL-1β stores is necessary for optimal MDP-mediated cytokine induction. Consistently, we detected IL-1β secretion within 10 min of MDP treatment. Moreover, caspase-1 inhibition significantly attenuates MDP-mediated early MAPK activation. Importantly, selective JNK/p38 activation is sufficient to rescue the decreased cytokine secretion during Nod2 stimulation in the absence of autocrine IL-1β. Finally, we found that the IL-1β autocrine loop significantly enhances responses by a broad range of pattern recognition receptors. Taken together, MDP stimulation activates Nod2 to process and release preexisting pro-IL-1β stores in a caspase-1-dependent fashion; this secreted IL-1β, in turn, contributes to the majority of MDP-initiated MAPK activation and leads to subsequent cytokine secretion. Our findings clarify mechanisms of IL-1β contributions to Nod2 responses and elucidate the dominant role of IL-1β in MDP-initiated MAPK and cytokine secretion.  相似文献   

4.
Death receptor-induced programmed necrosis is regarded as a secondary death mechanism dominating only in cells that cannot properly induce caspase-dependent apoptosis. Here, we show that in cells lacking TGFβ-activated Kinase-1 (TAK1) expression, catalytically active Receptor Interacting Protein 1 (RIP1)-dependent programmed necrosis overrides apoptotic processes following Tumor Necrosis Factor-α (TNFα) stimulation and results in rapid cell death. Importantly, the activation of the caspase cascade and caspase-8-mediated RIP1 cleavage in TNFα-stimulated TAK1 deficient cells is not sufficient to prevent RIP1-dependent necrosome formation and subsequent programmed necrosis. Our results demonstrate that TAK1 acts independently of its kinase activity to prevent the premature dissociation of ubiquitinated-RIP1 from TNFα-stimulated TNF-receptor I and also to inhibit the formation of TNFα-induced necrosome complex consisting of RIP1, RIP3, FADD, caspase-8 and cFLIP(L). The surprising prevalence of catalytically active RIP1-dependent programmed necrosis over apoptosis despite ongoing caspase activity implicates a complex regulatory mechanism governing the decision between both cell death pathways following death receptor stimulation.  相似文献   

5.
The intracellular regulation of cell death pathways by cIAPs has been enigmatic. Here we show that loss of cIAPs promotes the spontaneous formation of an intracellular platform that activates either apoptosis or necroptosis. This 2 MDa intracellular complex that we designate "Ripoptosome" is necessary but not sufficient for cell death. It contains RIP1, FADD, caspase-8, caspase-10, and caspase inhibitor cFLIP isoforms. cFLIP(L) prevents Ripoptosome formation, whereas, intriguingly, cFLIP(S) promotes Ripoptosome assembly. When cIAPs are absent, caspase activity is the "rheostat" that is controlled by cFLIP isoforms in the Ripoptosome and decides if cell death occurs by RIP3-dependent necroptosis or caspase-dependent apoptosis. RIP1 is the core component of the complex. As exemplified by our studies for TLR3 activation, our data argue that the?Ripoptosome critically influences the outcome of membrane-bound receptor triggering. The differential quality of cell death mediated by the Ripoptosome may cause important pathophysiological consequences during inflammatory responses.  相似文献   

6.
The COP9 signalosome is a large multiprotein complex that consists of eight subunits termed CSN1-CSN8. The diverse functions of the COP9 complex include regulation of several important intracellular pathways, including the ubiquitin/proteasome system, DNA repair, cell cycle, developmental changes, and some aspects of immune responses. Nod1 is also thought to be an important cytoplasmic receptor involved in innate immune responses. It detects specific motifs of bacterial peptidoglycan, and this results in activation of multiple signaling pathways and changes in cell function. In this report, we performed a yeast two-hybrid screening and discovered that Nod1 interacts with several components of the COP9 signalosome through its CARD domain. Moreover, we observed that activation of the Nod1 apoptotic pathway leads to specific cleavage of the subunit CSN6. This cleavage is concomitant with caspase processing and generates a short amino-terminal peptide of 3 kDa. A complete inhibition of this cleavage was achieved in the presence of the broad spectrum pharmacological inhibitor of apoptosis, Z-VAD. Furthermore, overexpression of CLARP, a specific caspase 8 inhibitor, completely blocked cleavage of CSN6. Taken together, these results suggest a critical role of caspase 8 in the processing of CSN6. Moreover, these findings suggest that CSN6 cleavage may result in modifications of functions of the COP9 complex that are involved in apoptosis.  相似文献   

7.
We cloned a novel cDNA derived from the CARD6 gene locus on chromosome 5p12 of 311 amino acids in length. By immunoprecipitation we detected specific binding of this CARD6-encoding protein to Nod1 (CARD4), Cardiak (Rip2/Rick), NAC (NALP1/DEFCAP/CARD7), and TUCAN (CARD8/Cardinal/NDPP/Dakar), caspase recruitment domain (CARD)-containing proteins implicated in NF-kappa B and caspase-1 activation but not to other CARD family proteins. Cardiak and Nod1 (but not other CARD proteins) also exhibited opposing effects on CARD6 protein phosphorylation and expression, providing further evidence of functional interactions among these proteins in cells. In transfection experiments, the CARD6 protein suppressed NF-kappa B induction by Nod1 or Cardiak but did not interfere with NF-kappa B activation by the CARD-containing adapter protein Bcl10 or the cytokine tumor necrosis factor-alpha, demonstrating specificity of CARD6 for Nod-1 and Cardiak-dependent pathways. In contrast to its effects on Nod1- and Cardiak-dependent NF-kappa B activation, CARD6 did not interfere with caspase-1-dependent interleukin-1 beta secretion induced by Cardiak or Nod1. CARD6 also did not affect caspase activation and apoptosis induced by overexpression of Fas, Bax, or other pro-apoptotic stimuli. Thus, CARD6 represents a selective modulator of NF-kappa B activation by Cardiak and Nod1, adding to the repertoire of CARD-family proteins implicated in inflammatory responses and innate immunity.  相似文献   

8.
We recently provided evidence that the ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 (HSV-1 and -2) protect cells against tumor necrosis factor alpha- and Fas ligand-induced apoptosis by interacting with caspase 8. Double-stranded RNA (dsRNA) is a viral intermediate known to initiate innate antiviral responses. Poly(I · C), a synthetic analogue of viral dsRNA, rapidly triggers caspase 8 activation and apoptosis in HeLa cells. Here, we report that HeLa cells after HSV-1 and HSV-2 infection were quickly protected from apoptosis caused by either extracellular poly(I · C) combined with cycloheximide or transfected poly(I · C). Cells infected with the HSV-1 R1 deletion mutant ICP6Δ were killed by poly(I · C), indicating that HSV-1 R1 plays a key role in antiapoptotic responses to poly(I · C). Individually expressed HSV R1s counteracted caspase 8 activation by poly(I · C). In addition to their binding to caspase 8, HSV R1s also interacted constitutively with receptor-interacting protein 1 (RIP1) when expressed either individually or with other viral proteins during HSV infection. R1(1-834)-green fluorescent protein (GFP), an HSV-2 R1 deletion mutant protein devoid of antiapoptotic activity, did not interact with caspase 8 and RIP1, suggesting that these interactions are required for protection against poly(I · C). HSV-2 R1 inhibited the interaction between the Toll/interleukin-1 receptor domain-containing adaptor-inducing beta interferon (IFN-β) (TRIF) and RIP1, an interaction that is essential for apoptosis triggered by extracellular poly(I · C) plus cycloheximide or TRIF overexpression. TRIF silencing reduced poly(I · C)-triggered caspase 8 activation in mock- and ICP6Δ-infected cells, confirming that TRIF is involved in poly(I · C)-induced apoptosis. Thus, by interacting with caspase 8 and RIP1, HSV R1s impair the apoptotic host defense mechanism prompted by dsRNA.  相似文献   

9.
Biton S  Ashkenazi A 《Cell》2011,145(1):92-103
Upon DNA damage, ataxia telangiectasia mutated (ATM) kinase triggers multiple events to promote cell survival and facilitate repair. If damage is excessive, ATM stimulates cytokine secretion to alert neighboring cells and apoptosis to eliminate the afflicted cell. ATM augments cell survival by activating nuclear factor (NF)-κB; however, how ATM induces cytokine production and apoptosis remains elusive. Here we uncover a p53-independent mechanism that transmits ATM-driven cytokine and caspase signals upon strong genotoxic damage. Extensive DNA lesions stimulated two sequential NF-κB activation phases, requiring ATM and NEMO/IKK-γ: The first phase induced TNF-α-TNFR1 feedforward signaling, promoting the second phase and driving RIP1 phosphorylation. In turn, RIP1 kinase triggered JNK3/MAPK10-dependent interleukin-8 secretion and FADD-mediated proapoptotic caspase-8 activation. Thus, in the context of excessive DNA damage, ATM employs NEMO and RIP1 kinase through autocrine TNF-α signaling to switch on cytokine production and caspase activation. These results shed light on cell-fate regulation by ATM.  相似文献   

10.
Mechanisms of cell death in pancreatitis remain unknown. Parenchymal necrosis is a major complication of pancreatitis; also, the severity of experimental pancreatitis correlates directly with necrosis and inversely with apoptosis. Thus, shifting death responses from necrosis to apoptosis may have a therapeutic value. To determine cell death pathways in pancreatitis and the possibility of necrosis/apoptosis switch, we utilized the differences between the rat model of cerulein pancreatitis, with relatively high apoptosis and low necrosis, and the mouse model, with little apoptosis and high necrosis. We found that caspases were greatly activated during cerulein pancreatitis in the rat but not mouse. Endogenous caspase inhibitor X-linked inhibitor of apoptosis protein (XIAP) underwent complete degradation in the rat but remained intact in the mouse model. Furthermore, XIAP inhibition with embelin triggered caspase activation in the mouse model, implicating XIAP in caspase blockade in pancreatitis. Caspase inhibitors decreased apoptosis and markedly stimulated necrosis in the rat model, worsening pancreatitis parameters. Conversely, caspase induction with embelin stimulated apoptosis and decreased necrosis in mouse model. Thus, caspases not only mediate apoptosis but also protect from necrosis in pancreatitis. One protective mechanism is through degradation of receptor-interacting protein (RIP), a key mediator of "programmed" necrosis. We found that RIP was cleaved (i.e. inactivated) in the rat but not the mouse model. Caspase inhibition restored RIP levels; conversely, caspase induction with embelin triggered RIP cleavage. Our results indicate key roles for caspases, XIAP, and RIP in the regulation of cell death in pancreatitis. Manipulating these signals to change the pattern of death responses presents a therapeutic strategy for treatment of pancreatitis.  相似文献   

11.
Among the tumor necrosis factor (TNF) family of cytokines, FasL and TNF-related apoptosis-inducing ligand (TRAIL) are known to induce cell death via caspase activation. Recently, other biological functions of these death ligands have been postulated in vitro and in vivo. It was previously shown that Fas ligation induces chemokine expression in human glioma cells. In this study, we investigated whether the TRAIL-DR5 system transduces signals similar to those induced by other TNF family ligands and receptors. To address this issue, two human glioma cell lines, CRT-MG and U87-MG, were used, and an agonistic antibody against DR5 (TRA-8) and human recombinant TRAIL were used to ligate DR5. We demonstrate that DR5 ligation by either TRAIL or TRA-8 induces two functional outcomes, apoptosis and expression of the chemokine interleukin-8 (IL-8); the nonspecific caspase inhibitor Boc-D-Fmk blocks both TRAIL-mediated cell death and IL-8 production; the caspase 3-specific inhibitor z-DEVD-Fmk suppresses TRAIL-mediated apoptosis but not IL-8 induction; caspase 1- and 8-specific inhibitors block both TRAIL-mediated cell death and IL-8 production; and DR5 ligation by TRAIL mediates AP-1 and NF-kappaB activation, which can be inhibited by caspase 1- and 8-specific inhibitors. These findings collectively indicate that DR5 ligation on human glioma cells leads to apoptosis and that the activation of AP-1 and NF-kappaB leads to the induction of IL-8 expression; these responses are dependent on caspase activation. Therefore, the TRAIL-DR5 system has a role not only as an inducer of apoptotic cell death but also as a transducer for proinflammatory and angiogenic signals in human brain tumors.  相似文献   

12.
Three members of the IAP family (X-linked inhibitor of apoptosis (XIAP), cellular inhibitor of apoptosis proteins-1/-2 (cIAP1 and cIAP2)) are potent suppressors of apoptosis. Recent studies have shown that cIAP1 and cIAP2, unlike XIAP, are not direct caspase inhibitors, but block apoptosis by functioning as E3 ligases for effector caspases and receptor-interacting protein 1 (RIP1). cIAP-mediated polyubiquitination of RIP1 allows it to bind to the pro-survival kinase transforming growth factor-β-activated kinase 1 (TAK1) which prevents it from activating caspase-8-dependent death, a process reverted by the de-ubiquitinase CYLD. RIP1 is also a regulator of necrosis, a caspase-independent type of cell death. Here, we show that cells depleted of the IAPs by treatment with the IAP antagonist BV6 are greatly sensitized to tumor necrosis factor (TNF)-induced necrosis, but not to necrotic death induced by anti-Fas, poly(I:C) oxidative stress. Specific targeting of the IAPs by RNAi revealed that repression of cIAP1 is responsible for the sensitization. Similarly, lowering TAK1 levels or inhibiting its kinase activity sensitized cells to TNF-induced necrosis, whereas repressing CYLD had the opposite effect. We show that this sensitization to death is accompanied by enhanced RIP1 kinase activity, increased recruitment of RIP1 to Fas-associated via death domain and RIP3 (which allows necrosome formation), and elevated RIP1 kinase-dependent accumulation of reactive oxygen species (ROS). In conclusion, our data indicate that cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent ROS production.  相似文献   

13.
The adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), connects pathogen/danger sensors such as NLRP3 and NLRC4 with caspases and is involved in inflammation and cell death. We have found that ASC activation induced caspase-8-dependent apoptosis or CA-074Me (cathepsin B inhibitor)-inhibitable necrosis depending on the cell type. Unlike necroptosis, another necrotic cell death, ASC-mediated necrosis, was neither RIP3-dependent nor necrostatin-1-inhibitable. Although acetyl-YVAD-chloromethylketone (Ac-YVAD-CMK) (caspase-1 inhibitor) did not inhibit ASC-mediated necrosis, comprehensive gene expression analyses indicated that caspase-1 expression coincided with the necrosis type. Furthermore, caspase-1 knockdown converted necrosis-type cells to apoptosis-type cells, whereas exogenous expression of either wild-type or catalytically inactive caspase-1 did the opposite. Knockdown of caspase-1, but not Ac-YVAD-CMK, suppressed the monocyte necrosis induced by Staphylococcus and Pseudomonas infection. Thus, the catalytic activity of caspase-1 is dispensable for necrosis induction. Intriguingly, a short period of caspase-1 knockdown inhibited IL-1β production but not necrosis, although longer knockdown suppressed both responses. Possible explanations of this phenomenon are discussed.  相似文献   

14.
Stimulation of tumor necrosis factor receptor 1 (TNFR1) can initiate several cellular responses, including apoptosis, which relies on caspases, necrotic cell death, which depends on receptor-interacting protein kinase 1 (RIP1), and NF-kappaB activation, which induces survival and inflammatory responses. The TNFR-associated death domain (TRADD) protein has been suggested to be a crucial signal adaptor that mediates all intracellular responses from TNFR1. However, cells with a genetic deficiency of TRADD are unavailable, precluding analysis with mature immune cell types. We circumvented this problem by silencing TRADD expression with small interfering RNA. We found that TRADD is required for TNFR1 to induce NF-kappaB activation and caspase-8-dependent apoptosis but is dispensable for TNFR1-initiated, RIP1-dependent necrosis. Our data also show that TRADD and RIP1 compete for recruitment to the TNFR1 signaling complex and the distinct programs of cell death. Thus, TNFR1-initiated intracellular signals diverge at a very proximal level by the independent association of two death domain-containing proteins, RIP1 and TRADD. These single transducers determine cell fate by triggering NF-kappaB activation, apoptosis, and nonapoptotic death signals through separate and competing signaling pathways.  相似文献   

15.
A RIP-like protein, RIP3, has recently been reported that contains an N-terminal kinase domain and a novel C-terminal domain that promotes apoptosis. These experiments further characterize RIP3-mediated apoptosis and NF-kappaB activation. Northern blots indicate that rip3 mRNA displays a restricted pattern of expression including regions of the adult central nervous system. The rip3 gene was localized by fluorescent in situ hybridization to human chromosome 14q11.2, a region frequently altered in several types of neoplasia. RIP3-mediated apoptosis was inhibited by Bcl-2, Bcl-x(L), dominant-negative FADD, as well as the general caspase inhibitor Z-VAD. Further dissection of caspase involvement in RIP3-induced apoptosis indicated inhibition by the more specific inhibitors Z-DEVD (caspase-3, -6, -7, -8, and -10) and Z-VDVAD (caspase-2). However, caspase-1, -6, -8 and -9 inhibitors had little or no effect on RIP3-mediated apoptosis. Mutational analysis of RIP3 revealed that the C-terminus of RIP3 contributed to its apoptotic activity. This region is similar, but distinct, to the death domain found in many pro-apoptotic receptors and adapter proteins, including FAS, FADD, TNFR1, and RIP. Furthermore, point mutations of RIP3 at amino acids conserved among death domains, abrogated its apoptotic activity. RIP3 was localized by immunofluorescence to the mitochondrion and may play a key role in the mitochondrial disruptions often associated with apoptosis.  相似文献   

16.
Two general pathways for cell death have been defined, apoptosis and necrosis. Previous studies in Jurkat cells have demonstrated that the Fas-associated death domain (FADD) is required for Fas-mediated signaling to apoptosis and necrosis. Here we developed L929rTA cell lines that allow Tet-on inducible expression and FK506-binding protein (FKBP)-mediated dimerization of FADD, FADD-death effector domain (FADD-DED), or FADD-death domain (FADD-DD). We show that expression and dimerization of FADD leads to necrosis. However, pretreatment of the cells with the Hsp90 inhibitor geldanamycin, which leads to proteasome-mediated degradation of receptor interacting protein 1 (RIP1), reverts FKBP-FADD-induced necrosis to apoptosis. Expression and dimerization of FADD-DD mediates necrotic cell death. We found that FADD-DD is able to bind RIP1, another protein necessary for Fas-mediated necrosis. Expression and dimerization of FADD-DED initiates apoptosis. Remarkably, in the presence of caspase inhibitors, FADD-DED mediates necrotic cell death. Coimmunoprecipitation studies revealed that FADD-DED in the absence procaspase-8 C/A is also capable of recruiting RIP1. However, when procaspase-8 C/A and RIP1 are expressed simultaneously, FADD-DED preferentially recruits procaspase-8 C/A.  相似文献   

17.
Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation.  相似文献   

18.
The Bcg/Nramp1 gene controls early resistance and susceptibility of macrophages to mycobacterial infections. We previously reported that Mycobacterium tuberculosis-infected (Mtb) B10R (Bcgr) and B10S (Bcgs) macrophages differentially produce nitric oxide (NO-), leading to macrophage apoptosis. Since TNF-alpha and IL-10 have opposite effects on many macrophage functions, we determined the number of cells producing TNF-alpha and IL-10 in Mtb-infected or purified protein derivative-stimulated B10R and B10S macrophages lines, and Nramp1+/+ and Nramp1-/- peritoneal macrophages and correlated them with Mtb-mediated apoptosis. Mtb infection and purified protein derivative treatment induced more TNF-alpha+Nramp1+/+ and B10R, and more IL-10+Nramp1-/- and B10S cells. Treatment with mannosylated lipoarabinomannan, which rescues macrophages from Mtb-induced apoptosis, augmented the number of IL-10 B10R+ cells. Anti-TNF-alpha inhibited apoptosis, diminished NO- production, p53, and caspase 1 activation and increased Bcl-2 expression. In contrast, anti-IL-10 increased caspase 1 activation, p53 expression, and apoptosis, although there was no increment in NO- production. Murine rTNF-alpha induced apoptosis in noninfected B10R and B10S macrophages that was reversed by murine rIL-10 in a dose-dependent manner with concomitant inhibition of NO- production and caspase 1 activation. NO- and caspase 1 seem to be independently activated in that aminoguanidine did not affect caspase 1 activation and the inhibitor of caspase 1, Tyr-Val-Ala-Asp-acylooxymethylketone, did not block NO- production; however, both treatments inhibited apoptosis. These results show that Mtb activates TNF-alpha- and IL-10-dependent opposite signals in the induction of macrophage apoptosis and suggest that the TNF-alpha-IL-10 ratio is controlled by the Nramp1 background of resistance/susceptibility and may account for the balance between apoptosis and macrophage survival.  相似文献   

19.
RIP1 is a serine/threonine kinase, which is involved in apoptosis and necroptosis. In apoptosis, caspase-8 and FADD have an important role. On the other hand, RIP3 is a key molecule in necroptosis. Recently, we reported that eleostearic acid (ESA) elicits caspase-3- and PARP-1-independent cell death, although ESA-treated cells mediate typical apoptotic morphology such as chromatin condensation, plasma membrane blebbing and apoptotic body formation. The activation of caspases, Bax and PARP-1, the cleavage of AIF and the phosphorylation of histone H2AX, all of which are characteristics of typical apoptosis, do not occur in ESA-treated cells. However, the underlying mechanism remains unclear. To clarify the signaling pathways in ESA-mediated apoptosis, we investigated the functions of RIP1, MEK, ERK, as well as AIF. Using an extensive study based on molecular biology, we identified the alternative role of RIP1 in ESA-mediated apoptosis. ESA mediates RIP1-dependent apoptosis in a kinase independent manner. ESA activates serine/threonine phosphatases such as calcineurin, which induces RIP1 dephosphorylation, thereby ERK pathway is activated. Consequently, localization of AIF and ERK in the nucleus, ROS generation and ATP reduction in mitochondria are induced to disrupt mitochondrial cristae, which leads to cell death. Necrostatin (Nec)-1 blocked MEK/ERK phosphorylation and ESA-mediated apoptosis. Nec-1 inactive form (Nec1i) also impaired ESA-mediated apoptosis. Nec1 blocked the interaction of MEK with ERK upon ESA stimulation. Together, these findings provide a new finding that ERK and kinase-independent RIP1 proteins are implicated in atypical ESA-mediated apoptosis.  相似文献   

20.
Nucleotide-binding oligomerization domain (Nod) proteins serve as intracellular pattern recognition molecules recognizing peptidoglycans. To further examine intracellular immune recognition, we used Listeria monocytogenes as an organism particularly amenable for studying innate immunity to intracellular pathogens. In contrast to wild-type L. monocytogenes, the nonpathogenic Listeria innocua, or L. monocytogenes mutants lacking internalin B or listeriolysin O, poorly invaded host cells and escaped into host cell cytoplasm, respectively, and were therefore used as controls. In this study, we show that only the invasive wild-type L. monocytogenes, but not the listeriolysin O- or internalin B-negative L. monocytogenes mutants or L. innocua, substantially induced IL-8 production in HUVEC. RNA interference and Nod1-overexpression experiments demonstrated that Nod1 is critically involved in chemokine secretion and NF-kappaB activation initiated by L. monocytogenes in human endothelial cells. Moreover, we show for the first time that Nod1 mediated activation of p38 MAPK signaling induced by L. monocytogenes. Finally, L. monocytogenes- and Nod1-induced IL-8 production was blocked by a specific p38 inhibitor. In conclusion, L. monocytogenes induced a Nod1-dependent activation of p38 MAPK signaling and NF-kappaB which resulted in IL-8 production in endothelial cells. Thus, Nod1 is an important component of a cytoplasmic surveillance pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号