首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi XB  Wei JM  Shen YK 《Biochemistry》2001,40(36):10825-10831
Ten truncated mutants of chloroplast ATP synthase epsilon subunit from spinach (Spinacia oleracea), which had sequentially lost 1-5 amino acid residues from the N-terminus and 6-10 residues from the C-terminus, were generated by PCR. These mutants were overexpressed in Escherichia coli, reconstituted with soluble and membrane-bound CF(1), and the ATPase activity and proton conductance of thylakoid membrane were examined. Deletions of as few as 3 amino acid residues from the N-terminus or 6 residues from the C-terminus of epsilon subunit significantly affected their ATPase-inhibitory activity in solution. Deletion of 5 residues from the N-terminus abolished its abilities to inhibit ATPase activity and to restore proton impermeability. Considering the consequence of interaction of epsilon and gamma subunit in the enzyme functions, the special interactions between the epsilon variants and the gamma subunit were detected in the yeast two-hybrid system and in vitro binding assay. In addition, the structures of these mutants were modeled through the SWISS-MODEL Protein Modeling Server. These results suggested that in chloroplast ATP synthase, both the N-terminus and C-terminus of the epsilon subunit show importance in regulation of the ATPase activity. Furthermore, the N-terminus of the epsilon subunit is more important for its interaction with gamma and some CF(o) subunits, and crucial for the blocking of proton leakage. Compared with the epsilon subunit from E. coli [Jounouchi, M., Takeyama, M., Noumi, T., Moriyama, Y., Maeda, M., and Futai, M. (1992) Arch. Biochem. Biophys. 292, 87-94; Kuki, M., Noumi, T., Maeda, M., Amemura, A., and Futai, M. (1988) J. Biol. Chem. 263, 4335-4340], the chloroplast epsilon subunit is more sensitive to N-terminal or C-terminal truncations.  相似文献   

2.
3.
The ATP synthases in photophosphorylation and respiration are of the F-type with a membrane-bound proton channel, F0, and an extrinsic catalytic portion, F1. The properties of one particular subunit, delta (in chloroplasts and Escherichia coli) and OSCP (in mitochondria), are reviewed and the role of this subunit at the interface between F0 and F1 is discussed. Delta and OSCP from the three sources have in common the molecular mass (approximately 20 kDa), an elongated shape (axial ratio in solution about 3:1), one high-affinity binding site to F1 (Kd approximately 100 nM) plus probably one or two further low-affinity sites. When isolated delta is added to CF1-depleted thylakoid membranes, it can block proton flow through exposed CF0 channels, as do CF1 or CF1(-delta)+ delta. This identifies delta as part of the proton conductor or, alternatively, conformational energy transducer between F0 (proton flow) and F1 (ATP). Hybrid constructs as CF1(-delta)+ E. coli delta and EF1(-delta)+ chloroplast delta diminish proton flow through CF0.CF1(-delta) + E. coli delta does the same on EF0. Impairment of proton leaks either through CF0 or through EF0 causes "structural reconstitution' of ATP synthesis by remaining intact F0F1. Functional reconstitution (ATP synthesis by fully reconstructed F0F1), however, is absolutely dependent on the presence of subunit delta and is therefore observed only with CF1 or CF1(-delta) + chloroplast delta on CF0 and EF1 or EF1(-delta) + E. coli delta on EF0. The effect of hybrid constructs on F0 channels is surprising in view of the limited sequence homology between chloroplast and E. coli delta (36% conserved residues including conservative replacements). An analysis of the distribution of the conserved residues at present does not allow us to discriminate between the postulated conformational or proton-conductive roles of subunit delta.  相似文献   

4.
The gene encoding the epsilon subunit (atpE) of the chloroplast ATP synthase of Spinacia oleracea has been overexpressed in Escherichia coli. The recombinant protein can be solubilized in 8 M urea and directly diluted into buffer containing ethanol and glycerol to obtain epsilon that is as biologically active as epsilon purified from chloroplast-coupling factor 1 (CF1). Recombinant epsilon folded in this manner inhibits the ATPase activity of soluble and membrane-bound CF1 deficient in epsilon and restores proton impermeability to thylakoid membranes reconstituted with CF1 deficient in epsilon. Site-directed mutagenesis was used to generate truncations and single amino acid substitutions in the primary structure of epsilon. In the five mutants tested, alterations that weaken ATPase inhibition by recombinant epsilon affect its ability to restore proton impermeability to a similar extent, with one exception. Substitution of histidine-37 with arginine appears to uncouple ATPase inhibition and the restoration of proton impermeability. As in the case of E. coli, it appears that N-terminal truncations of the epsilon subunit have more profound effects than C-terminal deletions on the function of epsilon. Recombinant epsilon with six amino acids deleted from the C terminus, which is the only region of significant mismatch between the epsilon of spinach and the epsilon of Pisum sativum, inhibits ATPase activity with a reduced potency similar to that of purified pea epsilon. Four of the six amino acids are serine or threonine. These hydroxylated amino acids may be important in epsilon-CF1 interactions.  相似文献   

5.
In this study a series of N- and/or C-terminal truncations of the cytoplasmic domain of the b subunit of the Escherichia coli F(1)F(0) ATP synthase were tested for their ability to form dimers using sedimentation equilibrium ultracentrifugation. The deletion of residues between positions 53 and 122 resulted in a strongly decreased tendency to form dimers, whereas all the polypeptides that included that sequence exhibited high levels of dimer formation. b dimers existed in a reversible monomer-dimer equilibrium and when mixed with other b truncations formed heterodimers efficiently, provided both constructs included the 53-122 sequence. Sedimentation velocity and (15)N NMR relaxation measurements indicated that the dimerization region is highly extended in solution, consistent with an elongated second stalk structure. A cysteine introduced at position 105 was found to readily form intersubunit disulfides, whereas other single cysteines at positions 103-110 failed to form disulfides either with the identical mutant or when mixed with the other 103-110 cysteine mutants. These studies establish that the b subunit dimer depends on interactions that occur between residues in the 53-122 sequence and that the two subunits are oriented in a highly specific manner at the dimer interface.  相似文献   

6.
F0F1 ATP synthases synthesize ATP in their F1 portion at the expense of free energy supplied by proton flow which enters the enzyme through their channel portion F0. The smaller subunits of F1, especially subunit delta, may act as energy transducers between these rather distant functional units. We have previously shown that chloroplast delta, when added to thylakoids partially depleted of the coupling factor CF1, can reconstitute photophosphorylation by inhibiting proton leakage through exposed coupling factor CF0. In view of controversies in the literature, we reinvestigated two further aspects related to subunit delta, namely (a) its stoichiometry in CF0CF1 and (b) whether or not delta is required for photophosphorylation. By rocket immunoelectrophoresis of thylakoid membranes and calibration against purified delta, we confirmed a stoichiometry of one delta per CF0CF1. In CF1-depleted thylakoids photophosphorylation could be reconstituted not only by adding CF1 and subunit delta but, surprisingly, also by CF1 (-delta). We found that the latter was attributable to a contamination of CF1 (-delta) preparations with integral CF1. To lesser extent CF1 (-delta) acted by complementary rebinding to CF0 channels that were closed because they contained delta [CF0(+delta)]. This added catalytic capacity to proton-tight thylakoid vesicles. The ability of subunit delta to control proton flow through CF0 and the absolute requirement for delta in restoration of photophosphorylation suggest an essential role of this small subunit at the interface between the large portions of ATP synthase: delta may be part of the coupling site between electrochemical, conformational and chemical events in this enzyme.  相似文献   

7.
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, was competent in nucleotide binding, and had normal N-terminal sequence. In F1 subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiments showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector.  相似文献   

8.
We investigated the ability of subunits beta, gamma, delta, and epsilon of CF1, the F1-ATPase of chloroplasts, to interact with exposed CF0 in EDTA-treated, partially CF1-depleted thylakoid membranes. We measured the ability of subunits beta, gamma, delta, and epsilon to stimulate the rate of photophosphorylation under continuous light and, for subunit beta, also the ability to diminish the proton leakage through exposed CF0 by deceleration of the decay of electrochromic absorption transients under flashing light. The greatest effect was caused by subunit beta, followed by gamma/delta/epsilon. Pairwise combinations of gamma, delta, and epsilon or each of these subunits alone were only marginally effective. Subunit gamma from the thermophilic bacterium PS 3 in combination with chloroplast delta and epsilon was as effective as chloroplast gamma. The finding that the small CF1 subunits in concert and the beta subunit by itself specifically interacted with the exposed proton channel CF0, qualifies the previous concept of subunit delta acting particularly as a plug to the open CF0 channel. The interactions between the channel and the catalytic portion of the enzyme seem to involve most of the small, and at least beta of the large subunits.  相似文献   

9.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
Upon EDTA treatment thylakoids lose the chloroplast coupling factor 1 (CF1) part of their ATP synthase, CF0CF1, this exposes the proton channel, CF0. The previously established ability of the CF1 subunit delta to block the proton leak through CF0 prompted us to study (a) the ability of complete CF1 and, for comparison, CF1 lacking the delta subunit to block proton leakage and thereby to reconstitute structurally some photophosphorylation activity of the remaining CF0CF1 molecules and (b) their ability to form functional enzymes (functional reconstitution). In order to discriminate between activities caused by added CF1 or CF1(-delta) and remaining CF0CF1, the former were inhibited by chemical modification of subunit beta by N,N'-dicyclohexyl carbodiimide (DCCD) and the latter by tentoxin. We found that added CF1 acted both structurally and functionally while added DCCD-treated CF1 (DCCD-CF1) acted only structurally. In contrast to previous observations, CF1(-delta) and DCCD-CF1(-delta) also acted structurally although the reduction of proton leakage was smaller than with DCCD-CF1. Hence there was no functional reconstitution without subunit delta present. Previous studies indicated that only a small fraction of exposed CF0 is highly conducting and that this small fraction is distinguished by its high affinity for added CF1. The results of this study point rather to a wider distribution of CF0 conductance states and binding affinities.  相似文献   

12.
A chloroplast ATP synthase complex (CF1 [chloroplast-coupling factor 1]-CF0 [membrane-spanning portion of chloroplast ATP synthase]) depleted of all CF0 subunits except subunit III (also known as the proteolipid subunit) was purified to study the interaction between CF1 and subunit III. Subunit III has a putative role in proton translocation across the thylakoid membrane during photophosphorylation; therefore, an accurate model of subunit inter-actions involving subunit III will be valuable for elucidating the mechanism and regulation of energy coupling. Purification of the complex from a crude CF1-CF0 preparation from spinach (Spinacia oleracea) thylakoids was accomplished by detergent treatment during anion-exchange chromatography. Subunit III in the complex was positively identified by amino acid analysis and N-terminal sequencing. The association of subunit III with CF1 was verified by linear sucrose gradient centrifugation, immunoprecipitation, and incorporation of the complex into asolectin liposomes. After incorporation into liposomes, CF1 was removed from the CF1-III complex by ethylenediaminetetracetate treatment. The subunit III-proteoliposomes were competent to rebind purified CF1. These results indicate that subunit III directly interacts with CF1 in spinach thylakoids.  相似文献   

13.
Delta mu H(+) is known to stimulate the enzyme activity of chloroplast ATP synthase in addition to its important role as energy supply for ATP synthesis. In the present study, we focused on the relationship between the proton translocation via the membrane sector of ATP synthase, F(o), and the conformational change of the central stalk subunit gamma. The conformational change of CF(1) mainly at the gamma subunit was induced by the proton flow via F(o) in the absence of substrates. The effects of inhibitors on CF(o) or CF(1) for this conformational change were also examined. The observed conformational change was partially suppressed by ADP binding. From these results, we propose the Delta mu H(+)-dependent conformational change of CF(1) on the enzyme activation process, which is affected by both ADP binding to the catalytic sites and proton flow via F(o) portion.  相似文献   

14.
Theε-subunit is the smallest subunit of chloroplast ATP synthase, and is known to inhibit ATPase activity in isolated CF1-ATPase. As a result ε is sometimes called an inhibitory subunit. In addition, and perhaps more importantly, theε-subunit is essential for the coupling of proton translocation to ATP synthesis (as proton gate). The relation between the structure and function ofε-subunit of ATP synthase in higher plant chloroplast has been studied by molecular biological methods such as site-directed mu-tagenesis and truncations for C- or N-terminus ofε-subunit. The results showed that: (1) Thr42 ofε-subunit is important for its structure and function; (2) compared with theε-subunit in E.. coli, theε-subunit of chloroplast ATP synthase is more sensitive to C- or N-terminus truncations.  相似文献   

15.
The A1AO adenosine triphosphate (ATP) synthase from archaea uses the ion gradients generated across the membrane sector (AO) to synthesize ATP in the A3B3 domain of the A1 sector. The energy coupling between the two active domains occurs via the so-called stalk part(s), to which the 12 kDa subunit F does belong. Here, we present the solution structure of the F subunit of the A1AO ATP synthase from Methanosarcina mazei G?1. Subunit F exhibits a distinct two-domain structure, with the N-terminal having 78 residues and residues 79-101 forming the flexible C-terminal part. The well-ordered N-terminal domain is composed of a four-stranded parallel beta-sheet structure and three alpha-helices placed alternately. The two domains are loosely associated with more flexibility relative to each other. The flexibility of the C-terminal domain is further confirmed by dynamics studies. In addition, the affinity of binding of mutant subunit F, with a substitution of Trp100 against Tyr and Ile at the very C-terminal end, to the nucleotide-binding subunit B was determined quantitatively using the fluorescence signals of natural subunit B (Trp430). Finally, the arrangement of subunit F within the complex is presented.  相似文献   

16.
The stator in F(1)F(o)-ATP synthase resists strain generated by rotor torque. In Escherichia coli, the b(2)delta subunit complex comprises the stator, bound to subunit a in F(o) and to the alpha(3)beta(3) hexagon of F(1). Previous work has shown that N-terminal residues of alpha subunit are involved in binding delta. A synthetic peptide consisting of the first 22 residues of alpha (alphaN1-22) binds specifically to isolated wild-type delta subunit with 1:1 stoichiometry and high affinity, accounting for a major portion of the binding energy between delta and F(1). Residues alpha6-18 are predicted by secondary structure algorithms and helical wheels to be alpha-helical and amphipathic, and a potential helix capping box occurs at residues alpha3-8. We introduced truncations, deletions, and mutations into alphaN1-22 peptide and examined their effects on binding to the delta subunit. The deletions and mutations were introduced also into the N-terminal region of the uncA (alpha subunit) gene to determine effects on cell growth in vivo and membrane ATP synthase activity in vitro. Effects seen in the peptides were well correlated with those seen in the uncA gene. The results show that, with the possible exception of residues close to the initial Met, all of the alphaN1-22 sequence is required for binding of delta to alpha. Within this sequence, an amphipathic helix seems important. Hydrophobic residues on the predicted nonpolar surface are important for delta binding, namely alphaIle-8, alphaLeu-11, alphaIle-12, alphaIle-16, and alphaPhe-19. Several or all of these residues probably make direct interaction with helices 1 and 5 of delta. The potential capping box sequence per se appeared less important. Impairment of alpha/delta binding brings about functional impairment due to reduced level of assembly of ATP synthase in cells.  相似文献   

17.
18.
The purpose of the study was to compare the effects of deamidation alone, truncation alone, or both truncation and deamidation on structural and functional properties of human lens alphaA-crystallin. Specifically, the study investigated whether deamidation of one or two sites in alphaA-crystallin (i.e., alphaA-N101D, alphaA-N123D, alphaA-N101/123D) and/or truncation of the N-terminal domain (residues 1-63) or C-terminal extension (residues 140-173) affected the structural and functional properties relative to wild-type (WT) alphaA. Human WT-alphaA and human deamidated alphaA (alphaA-N101D, alphaA-N123D, alphaA-N101/123D) were used as templates to generate the following eight N-terminal domain (residues 1-63) deleted or C-terminal extension (residues 140-173) deleted alphaA mutants and deamidated plus N-terminal domain or C-terminal extension deleted mutants: (i) alphaA-NT (NT, N-terminal domain deleted), (ii) alphaA-N101D-NT, (iii) alphaA-N123D-NT, (iv) alphaA-N101/123D-NT, (v) alphaA-CT (CT, C-terminal extension deleted), (vi) alphaA-N101D-CT, (vii) alphaA-N123D-CT, and (viii) alphaA-N101/123D-CT. All of the proteins were purified and their structural and functional (chaperone activity) properties determined. The desired deletions in the alphaA-crystallin mutants were confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric analysis. Relative to WT-alphaA homomers, the mutant proteins exhibited major structural and functional changes. The maximum decrease in chaperone activity in homomers occurred on deamidation of N123 residue, but it was substantially restored after N- or C-terminal truncations in this mutant protein. Far-UV circular dichroism (CD) spectral analyses generally showed an increase in the beta-contents in alphaA mutants with deletions of N-terminal domain or C-terminal extension and also with deamidation plus above N- or C-terminal deletions. Intrinsic tryptophan (Trp) and total fluorescence spectral studies suggested altered microenvironments in the alphaA mutant proteins. Similarly, the ANS (8-anilino-1-naphthalenesulfate) binding showed generally increased fluorescence with blue shift on deletion of the N-terminal domain in the deamidated mutant proteins, but opposite effects were observed on deletion of the C-terminal extension. Molecular mass, polydispersity of homomers, and the rate of subunit exchange with WT-alphaB-crystallin increased on deletion of the C-terminal extension in the deamidated alphaA mutants, but on N-terminal domain deletion these values showed variable results based on the deamidation site. In summary, the data suggested that the deamidation alone showed greater effect on chaperone activity than the deletion of N-terminal domain or C-terminal extension of alphaA-crystallin. The N123 residue of alphaA-crystallin plays a crucial role in maintaining its chaperone function. However, both the N-terminal domain and C-terminal extension are also important for the chaperone activity of alphaA-crystallin because the activity was partially or fully recovered following either deletion in the alphaA-N123D mutant. The results of subunit exchange rates among alphaA mutants and WT-alphaB suggested that such exchange is an important determinant in maintenance of chaperone activity following deamidation and/or deletion of the N-terminal domain or C-terminal extension in alphaA-crystallin.  相似文献   

19.
General structural features of the chloroplast ATP synthase are summarized highlighting differences between the chloroplast enzyme and other ATP synthases. Much of the review is focused on the important interactions between the epsilon and gamma subunits of the chloroplast coupling factor 1 (CF(1)) which are involved in regulating the ATP hydrolytic activity of the enzyme and also in transferring energy from the membrane segment, chloroplast coupling factor 0 (CF(0)), to the catalytic sites on CF(1). A simple model is presented which summarizes properties of three known states of activation of the membrane-bound form of CF(1). The three states can be explained in terms of three different bound conformational states of the epsilon subunit. One of the three states, the fully active state, is only found in the membrane-bound form of CF(1). The lack of this state in the isolated form of CF(1), together with the confirmed presence of permanent asymmetry among the alpha, beta and gamma subunits of isolated CF(1), indicate that ATP hydrolysis by isolated CF(1) may involve only two of the three potential catalytic sites on the enzyme. Thus isolated CF(1) may be different from other F(1) enzymes in that it only operates on 'two cylinders' whereby the gamma subunit does not rotate through a full 360 degrees during the catalytic cycle. On the membrane in the presence of a light-induced proton gradient the enzyme assumes a conformation which may involve all three catalytic sites and a full 360 degrees rotation of gamma during catalysis.  相似文献   

20.
Ribosomal protein L2 is a primary 23S rRNA binding protein in the large ribosomal subunit. We examined the contribution of the N- and C-terminal regions of Bacillus stearothermophilus L2 (BstL2) to the 23S rRNA binding activity. The mutant desN, in which the N-terminal 59 residues of BstL2 were deleted, bound to the 23S rRNA fragment to the same extent as wild type BstL2, but the mutation desC, in which the C-terminal 74 amino acid residues were deleted, abolished the binding activity. These observations indicated that the C-terminal region is involved in 23S rRNA binding. Subsequent deletion analysis of the C-terminal region found that the C-terminal 70 amino acids are required for efficient 23S rRNA binding by BstL2. Furthermore, the surface plasmon resonance analysis indicated that successive truncations of the C-terminal residues increased the dissociation rate constants, while they had little influence on association rate constants. The result indicated that reduced affinities of the C-terminal deletion mutants were due only to higher dissociation rate constants, suggesting that the C-terminal region primarily functions by stabilizing the protein L2-23S rRNA complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号