首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Promoter of the Mycoplasma pneumoniae rRNA operon.   总被引:2,自引:1,他引:1       下载免费PDF全文
H C Hyman  R Gafny  G Glaser    S Razin 《Journal of bacteriology》1988,170(7):3262-3268
  相似文献   

2.
3.
4.
The 100 bp sequence from the beginning of the 16S rRNA gene of archaebacterium Halobacterium halobium and the adjacent 800 bp upstream sequence were determined. Four long (80 bp) direct repeats were found in the region preceeding the structural gene of the 16S rRNA. These repeats are proposed to constitute the promoter region of the rRNA operon of H. halobium.  相似文献   

5.
6.
7.
Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5–10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number of rrn operons. While growth parameters showed only minor differences, competition experiments revealed a clear pattern: 7–8 copies were optimal under conditions of fluctuating, occasionally rich nutrient influx and lower numbers were favored in stable, nutrient-limited environments. We found that the advantages of quick adjustment to nutrient availability, rapid growth and economic regulation of ribosome number all contribute to the selection of the optimal rrn operon number. Our results suggest that the wt rrn operon number of E. coli reflects the natural, ‘feast and famine’ life-style of the bacterium, however, different copy numbers might be beneficial under different environmental conditions. Understanding the impact of the copy number of rrn operons on the fitness of the cell is an important step towards the creation of functional and robust genomes, the ultimate goal of synthetic biology.  相似文献   

8.
9.
Like most eukaryotes, Saccharomyces cerevisiae cells contain a minor 5.8SL rRNA that, relative to the major 5.8SS species, carries several extra nucleotides at the 5'-end. The two species are produced by alternative pathways that differ in the events removing the 3'-terminal region of Internal Transcribed Spacer 1 from the 27SA2 pre-rRNA. Whereas the pathway leading to 5.8SS rRNA is well established, that producing the 5'-end of 5.8SL (called B1L) is poorly understood. Northern analysis of two different mutants of S. cerevisiae that overproduce 5.8SL rRNA revealed the presence of a fragment corresponding to the 3'-terminal region of Internal Transcribed Spacer 1 (ITS1) directly upstream from site B1L. Immunoprecipitation experiments showed this fragment to be associated with the trans-acting factor Rrp5p required for processing at the early sites A0-A3. Together these data clearly support that the 5'-end of 5.8SL rRNA is an endonucleolytic event. In vivo mutational analysis demonstrated the lack of any cis-acting sequence elements directing this cleavage within ITS1.  相似文献   

10.
11.
A new low-molecular-weight bound sulphite was found in yeast enzyme reaction systems which convert the sulphur of 35S-labelled adenosine 3'-phosphate 5'-sulphatophosphate into exchangeable radioactive sulphite. This bound sulphite was separated from other components by paper electrophoresis and Sephadex G-25 chromatography, and shown to be a peptide with multiple thiol groups and an estimated mol.wt. of 1400. The labelled sulphur in this peptide is highly exchangeable with unlabelled sulphite, but exchangeability decreases with time and freeze-drying. The low-molecular-weight acceptor is tightly bound to enzyme B of the yeast system and, apparently, accepts the sulpho group of adenosine 3'-phosphate 5'-sulphatophosphate and is released as bound sulphite only in the presence of enzymically or chemically reduced fraction C. It is proposed that the low-molecular-weight acceptor is a carrier peptide which, after release of the reduced sulphur, becomes re-oxidized and returns to enzyme B. Fraction C appears to function as an obligatory reductant of the oxidized acceptor before it can accept another-SO-3-moiety from adenosine 3'-phosphate 5'-sulphatophosphate. These findings are consistent with mechanisms proposed for sulphate reduction in spinach and Chlorella, and suggest that fraction C is the natural thiol required in these systems. An improved column technique for the preparation of adenosine 3'-phosphate 5'-sulphatophosphate is described.  相似文献   

12.
Polyamines have been shown to bind to doubled stranded regions of rRNA [3]. Therefore, ribosomal proteins that can be cross linked to these molecules in the ribosomes structure must be bound to or located in the vicinity of the RNA. This technique is the first to yield results on the proteins associated with the rRNA in the eukaryotic ribosome where the lack of purified ribosomal proteins does not allow the use of direct binding studies as in bacterial systems. Proteins S7, S10, S13, S21, S22 and S27 in the small subunit and L2/3, L5, L10/12, L19/20, L22, L23, L36/37, L42 and L43' in the large subunit are labelled when cross linked to [14C]spermidine using 1,5-difluoro 2,4-dinitrobenzene and are good candidates to be RNA-binding proteins in ribosomes from Saccharomyces cerevisiae.  相似文献   

13.
14.
RRP5 is required for formation of both 18S and 5.8S rRNA in yeast.   总被引:17,自引:1,他引:16       下载免费PDF全文
J Venema  D Tollervey 《The EMBO journal》1996,15(20):5701-5714
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S) are synthesized as a single precursor which is subsequently processed into the mature rRNAs by a complex series of cleavage and modification reactions. In the yeast Saccharomyces cerevisiae, the early pre-rRNA cleavages at sites A0, A1 and A2, required for the synthesis of 18S rRNA, are inhibited in strains lacking RNA or protein components of the U3, U14, snR10 and snR30 small nucleolar ribonucleoproteins (snoRNPs). The subsequent cleavage at site A3, required for formation of the major, short form of 5.8S rRNA, is carried out by another ribonucleoprotein, RNase MRP. A screen for mutations showing synthetic lethality with deletion of the non-essential snoRNA, snR10, identified a novel gene, RRP5, which is essential for viability and encodes a 193 kDa nucleolar protein. Genetic depletion of Rrp5p inhibits the synthesis of 18S rRNA and, unexpectedly, also of the major short form of 5.8S rRNA. Pre-rRNA processing is concomitantly impaired at sites A0, A1, A2 and A3. This distinctive phenotype makes Rrp5p the first cellular component simultaneously required for the snoRNP-dependent cleavage at sites A0, A1 and A2 and the RNase MRP-dependent cleavage at A3 and provides evidence for a close interconnection between these processing events. Putative RRP5 homologues from Caenorhabditis elegans and humans were also identified, suggesting that the critical function of Rrp5p is evolutionarily conserved.  相似文献   

15.
Unusual enhancer function in yeast rRNA transcription.   总被引:15,自引:8,他引:7       下载免费PDF全文
  相似文献   

16.
Signals sufficient for 3'-end formation of yeast mRNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

17.
Here we present evidence that only five of the seven rRNA operons present in Escherichia coli are necessary to support near-optimal growth on complex media. Seven rrn operons are necessary, however, for rapid adaptation to nutrient and temperature changes, suggesting it is the ability to adapt quickly to changing environmental conditions that has provided the selective pressure for the persistence of seven rrn operons in E. coli. We have also found that one consequence of rrn operon inactivation is a miscoordination of the concentrations of initiation factor IF3 and ribosomes.  相似文献   

18.
19.
The nucleotide sequences of the rRNA genes and the 5 flanking region were determined for R. salmoninarum ATCC 33209T from overlapping products generated by PCR amplification from the genomic DNA. Comparison of the sequences with rRNA genes from a variety of bacteria demonstrated the close relatedness between R. salmoninarum and the high G+C group of the actinobacteria, in particular, Arthrobacter species. A regulatory element within the 5 leader of the rRNA operon was identical to an element, CL2, described for mycobacteria. PCR, DNA sequence analysis, and DNA hybridisation were performed to examine variation between isolates from diverse sources which represented the four 16S–23S rRNA intergenic spacer sequevars previously described for R. salmoninarum. Two 23S–5S rRNA intergenic spacer sequevars of identical length were found. DNA hybridisation using probes complementary to 23S rDNA and 16S rDNA identified two rRNA operons which were identical or nearly identical amongst 40 isolates sourced from a variety of countries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号