首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogeochemistry of nitrogen in freshwater wetlands   总被引:12,自引:7,他引:12  
The biogeochemistry of N in freshwater wetlands is complicated by vegetation characteristics that range from annual herbs to perennial woodlands; by hydrologic characteristics that range from closed, precipitation-driven to tidal, riverine wetlands; and by the diversity of the nitrogen cycle itself. It is clear that sediments are the single largest pool of nitrogen in wetland ecosystems (100's to 1000's g N m-2) followed in rough order-of-magnitude decreases by plants and available inorganic nitrogen. Precipitation inputs (< 1–2 g N m-2 yr-1) are well known but other atmospheric inputs, e.g. dry deposition, are essentially unknown and could be as large or larger than wet deposition. Nitrogen fixation (acetylene reduction) is an important supplementary input in some wetlands (< < 1–3 g N m-2 yr-1) but is probably limited by the excess of fixed nitrogen usually present in wetland sediments.Plant uptake normally ranges from a few g N m-2 yr-1 to 35 g N m-2 yr-1 with extreme values of up to 100g N m-2 yr-1 Results of translocation experiments done to date may be misleading and may call for a reassessment of the magnitude of both plant uptake and leaching rates. Interactions between plant litter and decomposer microorganisms tend, over the short-term, to conserve nitrogen within the system in immobile forms. Later, decomposers release this nitrogen in forms and at rates that plants can efficiently reassimilate.The NO3 formed by nitrification (< 0.1 to 10 g N m-2 yr-1 has several fates which may tend to either conserve nitrogen (uptake and dissimilatory reduction to ammonium) or lead to its loss (denitrification). Both nitrification and denitrification operate at rates far below their potential and under proper conditions (e.g. draining or fluctuating water levels) may accelerate. However, virtually all estimates of denitrification rates in freshwater wetlands are based on measurements of potential denitrification, not actual denitrification and, as a consequence, the importance of denitrification in these ecosystems may have been greatly over estimated.In general, larger amounts of nitrogen cycle within freshwater wetlands than flow in or out. Except for closed, ombrotrophic systems this might seem an unusual characteristic for ecosystems that are dominated by the flux of water, however, two factors limit the opportunity for N loss. At any given time the fraction of nitrogen in wetlands that could be lost by hydrologic export is probably a small fraction of the potentially mineralizable nitrogen and is certainly a negligible fraction of the total nitrogen in the system. Second, in some cases freshwater wetlands may be hydrologically isolated so that the bulk of upland water flow may pass under (in the case of floating mats) or by (in the case of riparian systems) the biotically active components of the wetland. This may explain the rather limited range of N loading rates real wetlands can accept in comparison to, for example, percolation columns or engineered marshes.  相似文献   

2.
The methane cycle in constructed wetlands without plants and withPhragmites australis (reed) and Scirpus lacustris (bulrush) wasinvestigated. Variations in CH4production largely determined variations in CH4 emission among the systems, rather than variations inCH4 storage and oxidation. Twofoldlower CH4 production rates in theScirpus system (5.6–13 mmol m-2 d-1) relative to the control (16.7–17.6 mmolm-2 d-1) were accompanied by a lower contribution ofmethanogenesis to organic carbon metabolism (20% for Scirpus vs.80% for control). Sedimentary iron(II) reservoirs were smallerin the Scirpus than control sediment (300 vs. 485 mmol.m-2) and a shuttle role for iron asan intermediate between root O2release and carbon oxidation, attenuating the availability of substrate formethanogens, is suggested. Differences in CH4 production among the Phragmites and Scirpus systemswere controlled by the interspecific variation in sediment oxidationcapacities of both plant species. Comparatively, in the Phragmites sediment,dissolved iron reservoirs were larger (340 mmol.m-2) and methanogenesis was a more importantpathway (80%). Methane transport was mainly plant mediated inthe Phragmites and Scirpus systems, but ebullition dominated in thenon-vegetated control systems as well as in the vegetated systems when plantbiomass was low.  相似文献   

3.
It is generally known that the water quality of shallow lakes can be influenced significantly by marginal wetlands. In order to study the efficacy of constructed littoral wetlands in the IJsselmeer area (The Netherlands) for water quality improvement, a field survey was carried out in 2003. Vegetation, soil, pore water and surface water characteristics were measured in spring and summer in two types of littoral zones: natural and constructed for 8–16 years. The study showed that constructed wetlands perform well and are suitable to enlarge the vegetated littoral zone in the IJsselmeer area. In both natural and constructed sites vegetation biomass varied between 2,200 g m−2 for helophyte vegetation and 1,300 g m−2 for low herbaceous vegetation. Nutrient concentrations in the pore water of constructed sites tended to be higher than in natural sites. and concentrations in pore water were much lower when vegetation was present, probably as a result of plant uptake. The N and P accumulation rate in the soil of constructed wetlands was 20 g N m−2 y−1 and 3 g P m−2 y−1 in vegetated plots; without vegetation the rate was much lower (8 g N m−2 y−1 and 1.8 g P m−2 y−1). We conclude that concerning their effect on water quality, constructed sites may replace natural sites, at least after 8–16 years. Principal component analysis showed a relationship between vegetation biomass and flooding, and nutrient concentrations in soil and pore water. Biomass was negatively correlated with extractable nutrients and positively with soil total N and P content. Flooding duration was negatively related to pore water salinity and positively to pore water nutrients. Due to their high biomass, helophyte stands retained significantly more nutrients than low pioneer vegetation and are therefore more suitable for improving water quality. Handling editor: S. Declerck  相似文献   

4.
Overwinter and snowmelt processes are thought to be critical to controllersof nitrogen (N) cycling and retention in northern forests. However, therehave been few measurements of basic N cycle processes (e.g.mineralization, nitrification, denitrification) during winter and littleanalysis of the influence of winter climate on growing season N dynamics.In this study, we manipulated snow cover to assess the effects of soilfreezing on in situ rates of N mineralization, nitrification and soilrespiration, denitrification (intact core, C2H2 – based method),microbial biomass C and N content and potential net N mineralization andnitrification in two sugar maple and two yellow birch stands with referenceand snow manipulation treatment plots over a two year period at theHubbard Brook Experimental Forest, New Hampshire, U.S.A. The snowmanipulation treatment, which simulated the late development of snowpackas may occur in a warmer climate, induced mild (temperatures >–5 °C) soil freezing that lasted until snowmelt. The treatmentcaused significant increases in soil nitrate (NO3 )concentrations in sugar maple stands, but did not affect mineralization,nitrification, denitrification or microbial biomass, and had no significanteffects in yellow birch stands. Annual N mineralization and nitrificationrates varied significantly from year to year. Net mineralization increasedfrom 12.0 g N m–2 y–1 in 1998 to 22 g N m–2 y–1 in 1999 and nitrification increased from 8 g N m–2 y–1 in 1998 to 13 g N m–2 y–1 in 1999.Denitrification rates ranged from 0 to 0.65 g N m–2 y–1. Ourresults suggest that mild soil freezing must increase soil NO3 levels by physical disruption of the soil ecosystem and not by direct stimulation of mineralization and nitrification. Physical disruption canincrease fine root mortality, reduce plant N uptake and reduce competitionfor inorganic N, allowing soil NO3 levels to increase evenwith no increase in net mineralization or nitrification.  相似文献   

5.
Summary We examined the transition from ectothermy to endothermy in nestling bank swallows (Riparia riparia) by measuring the peak metabolic response to cold (PMR) in groups of nestlings. Additionally aerobic capacity, as assessed by citrate synthase activity (CS), and contractile function, as assessed by myofibrillar ATPase activity (mATPase) were measured in the pectoralis and mixed leg muscles during development. During the first 65% of their growth (from 2–12 g) bank swallows do not increase their metabolic rate in response to cold (Fig. 1). Between 12 and 16 g the PMR increased from 4 to more than 10 ml O2 (g·h)–1. Citrate synthase activity increased throughout development, starting at 20 moles (min·g fresh mass)–1 in both tissues and increasing to 150 and 50 moles (min·g)–1 in the pectoralis and leg muscles, respectively (Fig. 5). The augmented aerobic capacity combined with large increases in muscle mass undoubtedly contributes to the improved thermoregulatory abilities of older nestlings. However, muscle mass and aerobic capacity increase continuously and do not show the sharp transition noted in PMR. In the leg muscle mATPase activity is constant throughout growth, but in the pectoralis muscle it undergoes an abrupt increase from 0.5 moles (min·mg myofibrillar protein)–1 in animals weighing less than 12 g to 0.9 moles (min·mg)–1 in nestlings weighing more than 15 g (Fig. 6). The similar pattern of development of PMR and mATPase suggests a critical role for muscle development in the transition to endothermy in this species.Abbreviations CS citrate, synthase - mATPase myofibrillar adenosine triphosphatase - PMR peak metabolic rate during cold stress - rate of oxygen consumption  相似文献   

6.
Above- and below-ground biomass of the emergent Pontederia cordata and the floating-leaved Potamogeton epihydrus was measured during the growing season in three interconnected rivers in Connecticut, U.S.A. Maximum biomass of Pontederia, averaging 1,212 g m-2 dry weight (524 g m-2 above-ground, 688 g m-2 below-ground), occurred 100–150 days after major spring growth began. Peak biomass of Potamogeton averaged 94 g m-2 (81 g m-2 above-ground, 14 g m-2 below-ground) and was attained in 45–85 days. New growth of Pontederia in spring arose from, and was heavily subsidized by, the large biomass of living overwintered rhizomes and roots, which averaged 497 g m-2 in early June. This new growth appeared to have been produced in only one season, but in reality it contained energy fixed the current season, plus energy carried over from previous years. Net production of Pontederia calculated for only one growing season averaged 1,049 g m-2. Potamogeton also perennated from rhizomes, but the biomass of these organs in spring was low, averaging 11 g m-2 in late May. Biomass of Potamogeton in summer consisted primarily of tissue produced during the current season. Rhizomes and roots comprised a much greater proportion of the plant in Pontederia than in Potamogeton. The ratio of new living below-ground/above-ground biomass of Pontederia rose from zero in spring to an average of 1.71 in autumn. For Potamogeton, the below-ground/above-ground ratio averaged 0.37 in late spring, 0.20 in midsummer, and 0.41 in autumn. The overwintered below-ground biomass of Pontederia alive in spring was 42–79% of the new living below-ground biomass the previous autumn. Net photosynthetic efficiency during the period between initiation of major growth in spring and attainment of peak biomass averaged 1.3% for Pontederia and 0.3% for Potamogeton.  相似文献   

7.
Human activities have recently caused severe destruction of Sphagnum wetlands in subtropical high-mountain regions, calling for urgent efforts to restore Sphagnum wetlands. Through a greenhouse experiment in western Hubei, China, we studied the effects of different substrate types (peat and mountain soil) and different levels of nitrogen (N) (0, 2, 4, 6, 10 g m?2 year?1) and phosphorus (P) (0, 0.2, 0.5, 1, 2 g m?2 year?1) on the growth of Sphagnum palustre, which was evaluated by four growth indicators: length growth, number of capitula, coverage change and biomass. We aimed to determine the optimal nutrient conditions for S. palustre growth, which would contribute to the rapid colonization and restoration of Sphagnum wetlands. The results showed that the different substrates significantly influenced S. palustre growth. Compared with those of peat, the acidic properties of the local yellow brown soil in the subtropical high-mountain regions were more favorable for S. palustre growth. As N addition increased, the four growth indicators responded inconsistently to the different substrates. While the number of capitula markedly increased, the other three indicators significantly decreased in the mountain soil or exhibited no definitive changes in the peat. The addition of P markedly promoted S. palustre growth in both substrates. However, a threshold for P fertilization existed; the highest productivity occurred at P additions of 0.2 and 0.5 g m?2 year?1 in the peat and mountain soil, respectively. The N and P contents in the capitula increased in parallel as the N and P fertilization rates increased, suggesting that these nutrients were absorbed proportionately and were used during the growth of S. palustre.  相似文献   

8.
The present paper sums up the knowledge obtained from the study of growth periodicity in the underground organs ofPhragmites communis Trin. and from the analyses of differentPhragmites stands in three regions of Czechoslovakia. A period of intense growth ofPhragmites rhizomes was recorded in summer. Spring (end of April and beginning of May) and autumn (mainly September) seem to be the periods of most active root growth. During July and August, accumulation of reserve material takes place both in new and old rhizomes. In the stands investigated, the biomass ofPhragmites rhizomes varied from 2 kg/m2 to 5 kg/m2, and root dry weight from 0.08 kg/m2 to 3.6 kg/m2. The ratio of underground to total aboveground dry weight was highly variable (1.0 to 9.9). The estimated annual net rhizome production ofPhragmites, in two different stand, was 30% (?akvický fishpond) and 60% (Nesyt fishpond) of the seasonal maximum above-ground biomass.  相似文献   

9.
A. latifolia grown in the Borimalan forest block in Prasad range (24°11′N and 73°42′ E) exerts clear positive correlations between CBH (circumference breast height)and number of growth rings of bole and branches, tree height, total biomass and leaf area. The net above-ground biomass is 3.95 × 104 kg ha-1. The average increment in non-photosynthetic (trunk + branch) biomass shows two peaks, the lower peak at 11–16 growth ring period, and the higher one at 34–36 growth ring period. The ratio of leaf dry weight/leaf area is16.3 to 34.8 mg cm-2, the ratios between shoot net production: leaf weight and leaf area are1.5 g per g and 212 g m-2 respectively.  相似文献   

10.
Net aerial primary production (NAPP) of marsh macrophytes is usually estimated either by destructive sampling techniques or by phenometric techniques. Destructive methods, however, are thought to be inaccurate while phenometric techniques are very labour intensive. In this study a new method is presented which allows an accurate and more efficient estimation of NAPP. The method combines destructive sampling to determine end-of-season biomass and phenometric techniques to estimate the mortality of biomass before the end of the season. NAPP is derived through summation of these two estimates. Techniques needed to calculate the precision of the NAPP estimate are provided. The so called hybrid technique was used to estimate NAPP ofScirpus maritimus L. in a brackish marsh along the Westerschelde estuary, the Netherlands. Estimated NAPP was 1372 g m-2. End-of-season biomass accounted for 1106 g m-2, while mortality contributed 266 g m-2. Precision of the end-of-season biomass and the mortality estimates, expressed as coefficient of variation, was 18.2 and 26.0% respectively. The precision of the resultant, NAPP, was higher: 17.2%. These results indicate that NAPP could be estimated with a higher precision than end-of-season biomass. This contradicts the view that the accuracy of NAPP estimates can only be improved at the expense of its precision.  相似文献   

11.
1. Irradiance strongly affects the abundance of stream periphyton communities that in turn influence patterns of instream nutrient uptake. We examined relationships between irradiance and periphyton nutrient uptake taking into account diel and seasonal variation in ambient irradiance. 2. Uptake of dissolved N, P and C by periphyton as areal uptake (U) and demand (Vf) was determined under 11 irradiance levels (0–100% of ambient conditions) using shallow stream‐side experimental channels. Experiments were conducted once per season over one annual cycle with both day and night uptake rates assessed, together with periphyton biomass and autotrophic production rates. 3. No consistent diel variation in areal uptake or demand was detected for the predominant inorganic or total dissolved nutrients even at the highest irradiances. Lack of variation may indicate nutrient limitation, with photosynthetic sequestration and storage of C during the day for subsequent utilisation at night. Alternatively, oxygen consumption by photoautotrophs at night may stimulate compensatory heterotrophic uptake (e.g. denitrification). 4. In all seasons, release of dissolved organic N was detected during the day but to a lesser extent at night. This was not directly related to irradiance levels, indicating that heterotrophic metabolism (e.g. microbial decomposition) contributes to this phenomenon. 5. Areal uptake and demand for the predominant inorganic and total dissolved nutrients increased in response to increasing irradiance in some or all seasons, but rates were typically higher during the spring and summer. Saturation of areal uptake and demand at elevated irradiances was evident during the spring. demand was also saturated at higher irradiances in the summer and autumn. Maximum demand was comparable during spring and summer, but saturation occurred at lower irradiance in summer (24 h average 135–145 μmol m?2 s?1) relative to spring (312–424 μmol m?2 s?1), indicating more efficient nutrient uptake in summer. Higher total periphyton biomass in summer, but comparable autotrophic biomass (chlorophyll a), implies that heterotrophic metabolism may contribute to this greater efficiency. In spring, autotrophic biomass peaked at an irradiance level of 225 μmol m?2 s?1, also suggesting a role for heterotrophic metabolism in demand at higher irradiances. 6. The results of this study show that irradiance levels exert a strong influence on the nature and quantity of instream nutrient uptake with N demand saturated at elevated irradiance levels during the spring, summer and autumn. Our results also suggest that heterotrophic metabolism makes a measurable contribution to instream nutrient uptake even under higher irradiances that favour autotrophic activity.  相似文献   

12.
Summary Two deciduous tree species (yellow poplar and red maple) on Walker Branch Watershed (WBW), near Oak Ridge, Tennessee, were radiolabeled with 35S (87 day halflife) to study internal cycling, storage, and biogenic emission of sulfur (S). One tree of each species was girdled before radiolabeling to prevent phloem translocation to the roots, and the aboveground biomass was harvested prior to autumn leaf fall. Aboveground biomass, leaf fall, throughfall, and stemflow were sampled over a 13 to 24 week period. Sulfur-35 concentrations in tree leaves reached nearly asymptotic levels within 1 to 2 weeks after radiolabeling. Foliar leaching of 35S and leaf fall represented relatively unimportant return pathways to the forest soil. The final distribution of 35S in the nongirdled trees indicated little aboveground storage of S in biomass and appreciable (>60%) capacity to cycle S either to the belowground system by means of translocation or to the atmosphere by means of biogenic S emissions. Losses of volatile 35S were estimated from the amount of isotope missing (33%) in final inventories of the girdled trees. Estimated 35S emission rates from the girdled trees were 10-6 to 10-7 Ci cm-2 leaf d-1, and corresponded to an estimated gaseous S emission of approximately 0.1 to 1 g S cm-2 leaf d-1. Translocation to roots was a significant sink for 35S in the red maple tree (40% of the injected amount). Research on forest biogeochemical S cycles should further explore biogenic S emissions from trees as a potential process of S flux from forest ecosystems.  相似文献   

13.
A dynamic model that includes regrowth after harvesting aerial shoots of an emergent macrophyte, Typha angustifolia L., was applied to evaluate the nitrogen (N) budget and the N uptake by the plant from sediment in Shibakawa Pond, Japan. Under natural conditions (control/uncut stands), the analysis showed that the annual uptake of N from sediment was 26.6 gN/m2 and harvesting Typha shoots at their growth peak removed 29.0 gN/m2 from the system (142 days in summer). Harvesting in winter after weathering of leaves removed only 13.9 gN/m2. To evaluate the N budget considering regrowth shoot characteristics, three sets of harvesting experiments were done on 16 May, 8 July, and 5 August 2003. Our study revealed that May, July, and August harvesting removed 9.4, 21.9, and 16.3 gN/m2, respectively. Further, combining the first harvesting from spring to summer and the second harvesting in autumn (before the start of senescence of regrowth shoots), the annual total N removals in stands cut in May and autumn and July and autumn were 34.7 and 36.0 gN/m2, respectively—higher than that in stands cut in August and autumn (22.2 gN/m2) or that in uncut stands (13.9 gN/m2). At the same time, the amounts stored in rhizomes by stands cut in May and autumn, July and autumn, and August and autumn were 9.1, 8.4, and 4.4 gN/m2, respectively, lower than that in uncut stands (18.8 gN/m2). Our results suggest that summer harvesting, especially in July to August, improves N removal efficiency and decreases the translocation of N from primary shoots to rhizomes, which is important for the sustainable management of Typha-dominated wetlands. Combined summer and autumn harvests further increase the removal efficiency but drastically reduce the storage of N. This might be useful when we need to control the plants properly.  相似文献   

14.
Summary The populations and production of the macroinvertebrates of a Spartina anglica salt-marsh in eastern England were studied over two years. A total of fifteen species were recorded in the sediments, of which twelve species were of regular occurrence, and the total population density recorded ranged from 3,481 m-2 to 11,444m-2 over the twenty-four sampling occasions.The four most abundant species were Nereis diversicolor, Tubifex costatus, Corophium volutator and Hydrobia ulvae. Thirteen further taxa were associated with the canopy of Spartina, with a total population density ranging from 0 to 1,149 m-2. Total monthly standing crop ranged from 1.8 to 8.5 g C m-2 with peaks in July/August in both years. Nereis diversicolor contributed 55% to 86% of total biomass in each month.Production and respiration for each species was determined and annual assimilation calculated. The total annual production was 16 g C m-2 a-1 in both 1979 and 1980, with a corresponding assimilation of 60 g C m-2 a-1 Nereis diversicolar accounted for >80% of production and assimilation in both years, and the species is clearly of considerable potential importance in the dissipation of Spartina material. The canopy dwelling species accounted for about 1% of the total annual production and assimilation.  相似文献   

15.
The present study was carried out in the bamboo (Chusquea tessellata) páramo of Parque Natural Nacional de Chingaza, Eastern Cordillera, Colombia from December 1987 to April 1988. Above-ground biomass structure of bamboo páramo was quantified in 16 plots. These data are compared with previous results on above-ground biomass structure of bunch-grass (Calamagrostis spp.) páramos.The total (non-living and living) above-ground biomass of a Chusquea tessellata bamboo páramo was low (2,625 g DW · m–2) compared to bunch-grass páramo. Nevertheless, higher values of standing living biomass and litter are found in the bamboo páramo due to the leaf shed of the bamboo. The thick litter layer may inhibit germination and growth of nearby plants.Maximum biomass is found near the ground surface. Cumulative LAI (In transformed) and height in the bamboo vegetation are related parabolically for Chusquea tessellata and linearly for bunch-grass due to differences in leaf distribution. The mean bifacial LAI of living Chusquea tessellata leaves is 2.2 m2 · m–2, whereas it is 2.5 m2 · m-2 for all Poaceae.  相似文献   

16.
Paspalum distichum L. has been the dominant species in the monsoonal wetlands of the Keoladeo National Park in northcentral India since 1982 when grazing by water buffalo and domestic cattle was halted. Maximum water levels in these wetlands occur immediately after the end of the summer monsoon in late September of early October and then decline until the next summer monsoon the following June. After the normal 1985 monsoon, maximum water depths were around 140 cm. After the poor 1986 monsoon, maximum water depths were only around 60 cm. Paspalum distichum maximum aboveground biomass at four sites ranged from 850 g m-2 at the shallowest site to 3400 g m–2 at a deep water site. The maximum biomass of other vegetation types, which had dominated this wetland prior to 1982, ranged from 1400 g m-2 at a deep water site (Ipomoea aquatica Forsk.) to only 240 g m-2 to 400 g m-2 at a deep-water submersed site (Hydrilla verticillata (L. f.) Royle/Cyperus alopecuroides Rottb.) and at a shallow emergent site (Scirpus tuberosus Desf./Sporobolus helvolus (Trin.) Dur. et Schinz). For all vegetation types, biomass changed seasonally in response to changing water levels and temperatures. After the 1986 monsoon, above-ground biomass for all vegetation types was much lower than it had been after the 1985 monsoon. Mean below-ground biomass was very low in all vegetation types (1 to 47 g m-2). Paspalum distichum had a higher aboveground biomass at nearly all water depths in all seasons than that of the pre-1982 vegetation types. Paspalum distichum belowground biomass, however, is comparable to, or less than, that of the pre-1982 vegetation types. During years with an average monsoon, the overall primary production of these wetlands is estimated to have increased 2.5 to 3.5-fold since they were overgrown with Paspalum distichum.  相似文献   

17.
This paper presents data on species composition, biomass, and element pools (C, N, P, Ca, Mg, Na, K, Al, Fe, Mn) of the understory vegetation of spruce forests in the catchments of lakes ?ertovo jezero (CT) and Ple?né jezero (PL) in the Bohemian Forest (?umava, Czech Republic). Calamagrostis villosa was the most abundant species in the CT catchment, while Vaccinium myrtillus was the most abundant species in the PL catchment. The catchments weighted mean (CWM) of above-ground biomass of the understory vegetation was 288 and 723 g m?2 in the CT and PL catchments, respectively. The significant difference in the biomass between the catchments was caused by the much higher abundance of V. myrtillus in the PL catchment. The CWM of below-ground biomass of the fine roots was 491 and 483 g m?2 in the CT and PL catchments, respectively. The respective CWM element pools of biomass in the CT and PL catchments were: C (33 and 51 mol m?2), N (0.8 and 1.0 mol m?2), P (24 and 34 mmol m?2), Ca (53 and 113 mmol m?2), Mg (24 and 41mmol m?2), Na (3.7 and 6.5 mmol m?2), K (83 and 109 mmol m?2), Al (50 and 42 mmol m?2), Fe (13.3 and 7.3 mmol m?2), and Mn (4.2 and 8.8 mmol m?2).  相似文献   

18.
Transpiration, leaf conductance, net photosynthesis, leaf growth, above-ground biomass and regeneration of new culms were studied in a rapidly subsiding Spartina alterniflora Lois. salt marsh following the addition at 47 and 94 Kg m–2 of new sediment. Plant growth was enhanced in response to sediment addition as was evident by a significant increase in leaf area, above-ground biomass production and regeneration of new culms (p 0.05). Leaf conductance and transpiration rates were significantly greater in sediment treated plants than in control plants (p 0.05). Enhanced production of culms per unit area of marsh resulted in increased leaf area which allowed a greater capacity for net photosynthesis and contributed to increases in above-ground biomass of sediment treated plots.  相似文献   

19.
Summary Ulmus alata and Diospyros virginiana are components of the shrubearly tree communities of old-field succession in several areas in the deciduous forests of eastern North America. In these habitats, the plants experience high insolation, high temperatures, and low soil moisture during the summer. They exhibit pronounced daily changes in water potential and usually develop more negative water potentials as the season progresses. The species light saturate at 1,150 E m-2 sec-1 with photosynthetic rates of 15 mg CO2 dm-2 h-1 for U. alata and 17 mg CO2 dm-2 h-1 for D. virginiana. The optimum temperatures for photosynthesis are 25°C. Ulmus alata maintains maximum photosynthesis to water potentials of-14 bars and recovers from-20 bars to 60% of maximum photosynthesis within 10 hrs after watering. When they are deprived of water, twigs of D. virginiana exhibit faster decline in photosynthesis and leaf conductance than twigs of U. alata. The two species have somewhat different response to the environmental of high insolation and low water supply. Unlike Ulmus, Diospyros virginiana has some adaptations which may explain the persistence of a few individuals in mature forests.  相似文献   

20.
Temperature, dissolved oxygen and dissolved methane profiles were measured during autumn and summer, in a shallow floodplain lake in south-eastern Australia to determine the effects of water-column stability on methane and oxygen dynamics. The water column was well mixed in autumn. Strong thermal stratification developed in the late afternoon in summer, with top-to-bottom temperature differences of up to 6 °C. Methane concentrations in surface waters varied over a daily cycle by an 18-fold range in summer, but only by a 2-fold range in autumn. The implication of short-term temporal variation is that static chambers deployed on the water surface for short times (less than a day) in summer will significantly underestimate the diffusive component of methane emissions across the water–atmosphere interface. There was a marked diel variation in dissolved oxygen concentrations in summer, with the highest oxygen values (commonly 5–8 mg l–1) occurring in the surface waters in late afternoon; the bottom waters were then devoid of oxygen (< 0.2 mg l–1). Because of high respiratory demands, even the surface water layers could be nearly anoxic by morning in summer. The concentration of dissolved oxygen in the surface waters was always less than the equilibrium value. When the water column became thermally stratified in summer, the dissolved oxygen and methane maxima were spatially separated, and planktonic methanotrophy would be limited to a moving zone, at variable depth, in the water column. In summer the whole-wetland rates of oxygen production and respiration, calculated from long-term (5 h) shifts in dissolved oxygen concentrations over a diel period, were approximately 6–10 and 3–6 mmol m–3 h–1, respectively. These values correspond to net and gross primary production rates of 0.7–1.2 and 1.0–1.9 g C m–3 day–1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号