首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
River water pollution is increasingly widespread in northern China and can lead to problems with the drinking water for the residents if not properly treated. Constructed wetlands are a promising solution and have become increasingly popular in China. In this study the nutrient removal and plant uptake in constructed microcosm wetlands vegetated with Typha orientalis, Phragmites australis, Scirpus validus and Iris pseudacorus for treating simulated polluted river water in northern China were investigated. The performance of the treatment systems from April to November was assessed. The maximum TN, NH4-N and TP removal efficiencies were 68%, 93% and 67%, respectively. And the maximum nutrient uptake by plants constituted 51.89% of the N removal and 34.17% of the P removal throughout the trial. S. validus and I. pseudacorus have a higher nutrient uptake capacity and are preferred species from a treatment perspective in constructed wetland in northern China.  相似文献   

2.
The aim of this study was to compare the growth, community structure, and nutrient removal rates between monoculture and mixed wetlands, based on the hypothesis that it depends on the plant species used in the wetlands as to whether monoculture or mixed wetland is superior in plant growth and nutrient removal. Pilot-scale monoculture and mixed constructed wetlands were studied over 4 years. The monoculture wetland had a community height similar to the mixed wetland during the early years but a significantly lower height than the mixed wetland (P < 0.05) during the last year. The mixed wetland also displayed a higher plant density than the monoculture wetland (P < 0.05). The leaf area index in the monoculture wetland was significantly higher in the first year (P < 0.05) and significantly lower in the later years (P < 0.05) than that in the mixed wetland. The monoculture wetland had a similar vertical distribution of below-ground biomass over 4 years, while the mixed wetland showed a significant change in vertical distribution of below-ground biomass in the last 2 years. The monoculture wetland had a larger (P < 0.05) above-ground biomass and a similar leaf biomass in the first year, and a smaller above-ground biomass (P < 0.05) and a smaller leaf biomass (P < 0.05) than the mixed wetland during the latter 2 years. The amount of standing dead mass was smaller in the mixed wetland than in the monoculture wetland (P < 0.05). The mixed wetland exhibited a significantly lower NH4-N removal rate in the first year (P < 0.05), and significantly higher NH4-N removal rate in the last year, when compared to the monoculture wetland (P < 0.05). The study indicated that species competition and stubble growth resulted in significant differences between monoculture and mixed constructed wetlands in plant growth, community structure, and nutrient removal rates.  相似文献   

3.
1. The relative contribution of roots and leaves to nutrient uptake by submerged stream macrophytes was tested in experiments where plants were grown in an outdoor flow-channel system. Water was supplied from a nutrient-rich stream with inorganic nitrogen and phosphorus concentrations typical of Danish streams.
2. Four submerged macrophyte species were tested, Elodea canadensis , Callitriche cophocarpa , Ranunculus aquatilis and Potamogeton crispus, and all species were able to satisfy their demand for mineral nutrients by leaf nutrient uptake alone. This was evident from manipulative experiments showing that removal of the roots had no negative impact on the relative growth rate of the plants. Further, the organic N and P concentrations of the plant tissue was constant with time for the de-rooted plants.
3. Enrichment of water and/or sediment had no effect on the relative growth rate of two species, E. canadensis and C. cophocarpa , indicating that in situ nutrient availability was sufficient to cover the needs for growth. Despite the lack of a response in growth rate, a reduced root/shoot biomass ratio was observed with nutrient enrichment of water and/or sediment, and an increased tissue-P concentration in response to open-water enrichment.
4. The open-water nutrient concentrations of the stream in which the experiments were performed are in the upper part of the range found for Danish farmland streams (the majority of Danish streams). Still, however, the negligible effect of nutrient enrichment on the growth of submerged macrophytes observed suggests that mineral nutrient availability might play a minor role in controlling macrophyte growth in most Danish streams.  相似文献   

4.
Foliar nutrient dynamics were studied at 8 forest stands (three non-tidal and five tidal) along the lower 30 km of the Apalachicola River system in Florida, USA, during 2008. At each site, we sampled canopy foliage and litterfall from three to four trees representative of the dominant overstory species. Foliage and litterfall were analyzed for a variety of elements including N and P and these data were used to examine differences in element concentrations, nutrient ratios (C:P, C:N, and N:P), nutrient use efficiency, and nutrient proficiency. Measurements of tree diameter at basal height (DBH) at each plot were used with species allometric equations to estimate forest litterfall dry weight and N and P flux in non-tidal and tidal wetlands. Both non-tidal and tidal wetlands showed evidence of P limitation based on N:P ratios, but absolute levels of P were determined to be extremely low in tidal wetlands based on higher nutrient use efficiencies (measures of both P resorption efficiency and proficiency). Differences in P concentrations and fluxes between tidal and non-tidal wetlands are probably related to longer inundation and hydrologic export observed in tidal wetlands. Using estimations of annual litterfall dry weight and nutrient concentrations, N and P flux in non-tidal swamps were 2-4 times greater than in tidal wetlands. This study demonstrates the change in nutrient dynamics as wetlands shift from tidal to non-tidal conditions.  相似文献   

5.
An aquatic microcosm, consisting of three spatially separated yet mutually dependent trophic levels, was established in the laboratory and monitored for 310 days. A three-fold research approach evaluates the experimental potential of this large, multicompartmental microecosystem. Realistic biological and chemical features and nutrient fluxes parallel identifiable patterns observed in natural aquatic ecosystems as well as in published laboratory observations. Two successional patterns developed in the autotrophic community: a sequential change in species composition and a progression from a one-compartment planktonic situation to a two-phased planktonic-attached system. Although the microcosm was initially seeded with an axenic culture of Cryptomonas ovata var. palustris Ehr, contamination by Chlorella, Scenedesmus, Closterium, and Anabaena occurred within 41 days. The appearance of attached algae, noted on day 5, marked the transition from a planktonically-based ecosystem to a heterogeneous system. Crashes in the cladoceran population occurred on days 103 and 202. The second collapse was final. Repeated attempts to reestablish Daphnia middendorffiana failed. Mineralization and nutrient cycling are recognizable properties of the microcosm. Ammonification, nitrification, and nitrogen assimilation occurred predominantly in the decomposer tank as did the regeneration of inorganic phosphorus. A peak on day 205 in the ammonia input to the algal tank drawn from beneath the bacterial filter bed followed a peak in total Kjeldahl nitrogen (TKN) (day 135) and preceded peaks in nitrate (day 219) and TKN (day 233). Although levels in the algal tank were undetectable after three weeks, dissolved orthophosphate was actively regenerated in the decomposer bed, recycled to the autotroph unit, and rapidly assimilated by the algae. Characteristic patterns of radiotracer circulation also were evident. Sequential movement of 32P from the dissolved compartment to phytoplankton to attached algae was proposed. Conversely, 14C was steadily incorporated into the phytoplankton compartment; filtrate activities fluctuated. Tracer behaviors in the cladoceran compartment were superficially cyclic. Carbon turnover times in the algal and zooplankton compartments were 17 and 11.11 hours, respectively. Indicative of the greater biological mobility of phosphorus, respective turnover times of 2.50 and 2.44 hours were similarly calculated for phosphorus. Unlike dissolved carbon which had a turnover time of 625 hours, dissolved phosphorus was rapidly cycled into the algae (turnover time = 0.58 h).  相似文献   

6.
While water quality function is cited as animportant wetland function to design for and preserve,we demonstrate that the scale at which hydrochemicalsamples are collected can significantly influenceinterpretations of biogeochemical processes inwetlands. Subsurface, chemical profiles for bothnutrients and major ions were determined at a site insouthwestern Wisconsin that contained areas of bothnatural and constructed wetlands. Sampling wasconducted on three different scales: (1) a large scale(3 m between sampling points), (2) an intermediatescale (0.15 m between sampling points), and (3) a smallscale (1.5 cm between sampling points). In mostcases, significant vertical heterogeneity was observedat the 0.15 m scale, which was much larger thanpreviously reported for freshwater wetlands and notdetected by sampling water table wells screened overthe same interval. However, profiles of ammonia andtotal phosphorus showed tenfold changes in the upper0.2 meters of the saturated zone when sampled at thesmall (1.5 cm) scale, that was not depicted bysampling at the intermediate scale. At theintermediate scale of observation, one constructedwetland site differed geochemically from the naturalwetlands and the other constructed wetland site due toapplication of off-site salvaged marsh surface anddownward infiltration of rain. While importantdifferences in dissolved inorganic phosphorus anddissolved inorganic carbon concentrations existedbetween the constructed wetland and the naturalwetlands, we also observed substantial differencesbetween the natural wetland sites for theseconstituents. A median-polishing analysis of our datashowed that temporal variations in constituentconcentrations within profiles, although extensivelyrecognized in the literature, were not as important asspatial variability.  相似文献   

7.
Investigation of the spatial distribution of metals was conducted for two constructed wetlands used as tertiary treatment in Chia Nan University of Pharmacy and Science (CNU) and Metal Processing Industries (MPI) located in Tainan, Taiwan. These two distinguished sites were selected to compare the distribution of metals for constructed wetlands treating different types of wastewater. Along the distance, samples of water, sediment, and macrophytes were analyzed for metals including Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. Additionally, measurements of water quality including temperature, pH, EC, ORP, DO, TSS, BOD, COD, and turbidity were performed. Results show that, at CNU, wastewater contained higher organic consititute (BOD 29.3 +/- 11.7 mg/, COD 46.7 +/- 33.6 mg/L) with low metals content. Wastewater at MPI contained low level of organic consititute (BOD 7.1 +/- 3.3 mg/L, and COD 66.0 +/- 56.5 mg/L) and higher metals content. Metals distribution of both sites showed similar results where metals in the sediments in the inlet zone have greater concentrations than other areas. The constructed wetlands can remove Cd, Cu, Ni, Pb, and Zn. However, there was no removal of Al, Cr, Fe, and Mn. A distance along the constructed wetlands had no effect on metal concentrations in macrophyte and water.  相似文献   

8.
Removal of pharmaceutical compounds in tropical constructed wetlands   总被引:2,自引:0,他引:2  
The ability of tropical horizontal subsurface constructed wetlands (HSSF CWs) planted with Typha angustifolia to remove four widely used pharmaceutical compounds (carbamazepine, declofenac, ibuprofen and naproxen) at the relatively short hydraulic residence time of 2-4 days was documented. For both ibuprofen and naproxen, pharmaceutical compounds with low Dow values, the planted beds showed significant (p < 0.05) enhancement of removal efficiencies (80% and 91%, respectively, at the 4 day HRT), compared to unplanted beds (60% and 52%, respectively). The presence of plants resulted in the removal of these pharmaceutical compounds from artificial wastewater. The more oxidizing environment in the rhizosphere might have played an important role, but other rhizosphere effects, beside rhizosphere aeration, appeared to be important also. Carbamazepine, considered one of the most recalcitrant pharmaceuticals, and declofenac showed low removal efficiencies in our CW, and this is attributable to their higher hydrophobicity. The fact that the removal of these compounds could be explained by the sorption onto the available organic surfaces, explains why there was no significant difference (p > 0.05) in their removal efficiencies between planted as compared to unplanted beds. No statistical significant differences (p > 0.05) were observed for the removal efficiencies of any of the pharmaceuticals tested for the 2-day HRT as compared to that corresponding to 4-day HRT. The rather efficient removal shown by the wetlands in this study (with HRTs of 2-4 days), indicates that such a CW system may be more practically used (with less land requirements) in tropical regions for removing conventional pollutants and certain pharmaceutical compounds from wastewater effluents.  相似文献   

9.
A global performance evaluation of an experimental Horizontal SubSurface Flow Constructed Wetlands (HSSF) was made after 6 years of functioning. This wetland is situated in French prealpine mountain, at 720 m elevation. The HSSF process treatment consists in a three-stage system dimensioned for 350 People Equivalent. Different helophytes were planted such as Typha latifolia, Phragmites australis and Scirpus maritimus. The mean hydraulic residence time for sewage was closed to 4–5 days, but in summer the mean pollutant residence time increases to 6 days due to an important evapotranspiration. There is no clogging of the gravel matrix and the hydraulic conductivity was very good and stabilized. Removal pollutant efficiency was determinate at each stages. There was a high removal of total suspended solids (TSS) all year around with an average of 95.6% (±3.6). More than 80% of removal occurred in the first stage. Physical processes (decantation, filtration) associated with biological oxidation were the principal factors of this removal. For COD and BOD5, removal efficiency in the first stage were close to 60% on average and more than 90% at the outlet of the wetland. These results are similar to those observed with SSFW in many cases. Influence of temperature seems very weak because there were no significant seasonal variations of the process efficiency. Minimum effluent quality standards (30 mg l–1 TSS; 120 mg l–1 COD; 40 mg l–1 BOD5) were always respected. In cold periods, nutrients uptake was reduced but remained up to 60% in average. Mean bacterial removal efficiency was about two order of magnitude (99%) but can reach up to five order of magnitude in summer. These cyclic variations follow a sinusoidal variation around an annual mean. Pollutants removals were correlated to their respective loadings and no limits has been observed except for nitrogen. These results confirm that SSFW, an ecotechnology, should be considered as an alternative to conventional treatment methods (activated sludge, fixed biofilm) for small communities even in mountainous area.  相似文献   

10.
Plant mineral nutrients such as phosphorus may exert major control on crop responses to the rising atmospheric carbon dioxide (CO2) concentrations. To evaluate the growth, nutrient dynamics, and efficiency responses to CO2 and phosphorus nutrition, soybean (Glycine max (L.) Merr.) was grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) phosphate (Pi) supply under ambient and elevated CO2 (aCO2, 400 and eCO2, 800 µmol mol?1, respectively). The CO2 × Pi interaction was detected for leaf area, leaf and stem dry weight, and total plant biomass. The severe decrease in plant biomass in Pi-deficient plants (10–76%) was associated with reduced leaf area and photosynthesis (Pnet). The degree of growth stimulation (0–55% total biomass) by eCO2 was dependent upon the severity of Pi deficiency and was closely associated with the increased phosphorus utilization efficiency. With the exception of leaf and root biomass, Pi deficiency decreased the biomass partitioning to other plant organs with the maximum decrease observed in seed weight (8–42%) across CO2 levels. The increased tissue nitrogen (N) concentration in Pi-deficient plants was accredited to the lower biomass and increased nutrient uptake due to the larger root to shoot ratio. The tissue P and N concentration tended to be lower at eCO2 versus aCO2 and did not appear to be the main cause of the lack of CO2 response of growth and Pnet under severe Pi deficiency. The leaf N/P ratio of >16 was detrimental to soybean growth. The tissue P concentration needed to attain the maximum productivity for biomass and seed yield tended to be higher at eCO2 versus aCO2. Therefore, the eCO2 is likely to increase the leaf critical P concentration for maximum biomass productivity and yield in soybean.  相似文献   

11.
Tannins in nutrient dynamics of forest ecosystems - a review   总被引:25,自引:3,他引:25  
Tannins make up a significant portion of forest carbon pools and foliage and bark may contain up to 40% tannin. Like many other plant secondary compounds, tannins were believed to function primarily as herbivore deterrents. However, recent evidence casts doubts on their universal effectiveness against herbivory. Alternatively, tannins may play an important role in plant–plant and plant–litter–soil interactions. The convergent evolution of tannin-rich plant communities on highly acidic and infertile soils throughout the world, and the intraspecific variation in tannin concentrations along edaphic gradients suggests that tannins can affect nutrient cycles. This paper reviews nutrient dynamics in forest ecosystems in relation to tannins. Tannins comprise a complex class of organic compounds whose concentration and chemistry differ greatly both among and within plant species. Because the function and reactivity of tannins are strongly controlled by their chemical structure, the effects of tannins on forest ecosystem processes are expected to vary widely. Tannins can affect nutrient cycling by hindering decomposition rates, complexing proteins, inducing toxicity to microbial populations and inhibiting enzyme activities. As a result, tannins may reduce nutrient losses in infertile ecosystems and may alter N cycling to enhance the level of organic versus mineral N forms. The ecological consequences of elevated tannin levels may include allelopathic responses, changes in soil quality and reduced ecosystem productivity. These effects may alter or control successional pathways. While a great deal of research has addressed tannins and their role in nutrient dynamics, there are many facets of tannin biogeochemistry that are not known. This lack of information hinders a complete synthesis of tannin effects on forest ecosystem processes and nutrient cycling. Areas of study that would help clarify the role of tannins in forest ecosystems include improved characterization and quantification techniques, enhanced understanding of structure-activity relationships, investigation of the fate of tannins in soil, further determination of the influence of environmental factors on plant tannin production and decomposition, and additional information on the effects of tannins on soil organisms.  相似文献   

12.
人工湿地对猪场废水有机物处理效果的研究   总被引:68,自引:1,他引:68  
分别以香根草 (Vetiveriazizanioides)和风车草 (Cyperusalternifolius)为植被 ,按 1.0m× 0 .5m×0 .8m建立人工湿地 ,通过 4季测试 ,研究其对猪场废水有机物的净化功能及其随季节、进水浓度及水力停留时间变化的规律 .结果表明 ,4个季节香根草或风车草人工湿地对COD和BOD有较稳定的去除效果 ,两湿地抗有机负荷冲击能力强 .在春季 ,停留时间 1~ 2d ,COD和BOD去除率分别为 70 %和 80 %;在夏季 ,进水COD高达 10 0 0~ 140 0mg·L-1情况下 ,COD去除率接近 90 %;在秋季 ,停留时间 1~ 2d ,COD和BOD去除率分别为 5 0 %~ 6 0 %和 5 0 %;在冬季 ,进水COD达 10 0 3mg·L-1情况下 ,COD去除率在 70 %以上 .COD、BOD和SS的去除率在两湿地间没有显著差异 .人工湿地污染物 (Y)随水力停留时间 (t)延长的降解遵从指数方程规律Yt=Y0 ·e( -kt) .在相同停留时间时 ,随进水污染物浓度 (x)提高的出水污染物浓度 (y)的回归关系遵从直线方程规律 y =a+bx .  相似文献   

13.
The performance and reliability of the CWM1-RETRASO model for simulating processes in horizontal subsurface flow constructed wetlands (HSSF CWs) and the relative contribution of different microbial reactions to organic matter (COD) removal in a HSSF CW treating urban wastewater were evaluated. Various different approaches with diverse influent configurations were simulated. According to the simulations, anaerobic processes were more widespread in the simulated wetland and contributed to a higher COD removal rate [72-79%] than anoxic [0-1%] and aerobic reactions [20-27%] did. In all the cases tested, the reaction that most contributed to COD removal was methanogenesis [58-73%]. All results provided by the model were in consonance with literature and experimental field observations, suggesting a good performance and reliability of CWM1-RETRASO. According to the good simulation predictions, CWM1-RETRASO is the first mechanistic model able to successfully simulate the processes described by the CWM1 model in HSSF CWs.  相似文献   

14.
The relative uptake rates of N, P, K, S, Ca, Mg, Fe, Mn, Zn, Cu, and Al were estimated in beech seedlings pot cultured in the field in six acid soils (treatments). The relative uptake rates were compared with the relative growth rates. The relative uptake rates of N, K and Ca agreed well with the growth rates of the seedlings irrespective of widely differing soil conditions (acid sand-clayey till, pH 4–6). The relative uptake rates of P, Fe, and Al differed from that predicted by the growth rate. The uptake rates of Fe and Al were highest at the lowest growth rates, and the P uptake rate was lower than the growth rate in these treatments. Thus the P availability probably limited growth in an eluvial (E) horizon of a podzol, and possibly in the illuvial (B) horizon of a podzol and in an acid clayey till (Dystric Cambisol). Low P uptake was associated with a tendency towards higher relative root growth rates. In terms of the concept of steady state nutrition the high relative root growth rate in some treatments may be interpreted as an acclimation to low P supply. The P limitation seemed to be related to interactions among Fe, Al and organic compounds of the soil solution.FAX no: +4646104423  相似文献   

15.
The structure and function of Shisham (Dalbergia sissoo Roxb.) forests were investigated in relation to nutrient dynamics in 5- to 15-year-old stands growing in central Himalaya. Nutrient concentrations and storage in different layers of vegetation were in the order: tree > shrub > herb. Forest soil, litter and vegetation accounted for 80.1-91.9, 1.0-1.5 and 7.0-18.4%, respectively, of the total nutrients in the system. There were considerable reductions (trees 32.8-43.1; shrubs 26.2-32.4; and herbs 18-8-22-2%) in nutrient concentrations of leaves during senescence. Nutrient uptake by the vegetation as a whole and also by the different components, with and without adjustment for internal recycling, was investigated. Annual transfer of litter nutrients to the soil from vegetation was 74.8-108.4 kg ha(-1) year(-1) N, 56.8-4 kg ha(-1) year(-1) P and 38.7-46.9 kg ha(-1) year(-1) K. Turnover rate and time for different nutrients ranged between 56 and 66 % year(-1) and 1.5 and 1.8 years, respectively. The turnover rate of litter indicates that over 50% of nutrients in litter on the forest floor are released, which ultimately enhances the productivity of the forest stand. The nutrient use efficiency in Shisham forests ranged from 136 to 143 kg ha(-1) year(-1) for N, 1,441 to 1,570 kg ha(-1) year(-1) for P and 305 to 311 kg ha(-1) year(-1) for K. Compared with natural oak forest (265 kg ha(-1) year(-1) and an exotic eucalypt plantation (18 kg ha(-1) year(-1), a higher proportion of nutrients was retranslocated in Shisham forests, largely because of higher leaf tissue nutrient concentrations. This indicates a lower nutrient use efficiency of Shisham compared with eucalypt and oak. Compartment models for nutrient dynamics have been developed to represent the distribution of nutrients pools and net annual fluxes within the system.  相似文献   

16.
Pilot-scale constructed wetlands (CW) were constructed and operated to treat pre-treated olive mill wastewater. Pilot-scale units comprising three identical series with four pilot-scale vertical flow CWs were operated for one harvest season in a Greek olive mill plant. The pilot-scale CWs were filled with various porous media (i.e., cobble, gravel, and sand) of different gradations. Two series of pilot-scale units were planted with common reeds and the third (control) was unplanted. Mean influent concentrations were 14,120 mg/L, 2841 mg/L, 95 mg/L, 123 mg/L and 506 mg/L for COD, phenols, ortho-phosphate, ammonia and TKN, respectively. Despite the rather high influent concentrations, the performance of the CW units was very effective since it achieved removals of about 70%, 70%, 75% and 87% for COD, phenols, TKN and ortho-phosphate, respectively. COD, phenol and TKN removal seems to be significantly higher in the planted series, while ortho-phosphate removal shows no significant differences among the three series. Temperature and pollutant surface load seem to affect the removal efficiency of all pollutants. Compared to previous studies, pollutant surface loads applied here were higher (by one or two orders of magnitude). Even though high removal efficiencies were achieved, effluent pollutant concentrations remained high, thus preventing their use for irrigation or immediate disposal into the environment.  相似文献   

17.
Greenhouse gas emissions from a constructed wetland in southern Sweden   总被引:1,自引:0,他引:1  
This paper investigates the greenhouse gas emissions from a Swedish wetland, constructed to decrease nutrient content in sewage treatment water. To evaluate the effect of the construction in terms of greenhouse gas emissions we carried out ecosystem-atmosphere flux measurements of CO2, CH4 and N2O using a closed chamber technique. To evaluate the importance of vascular plant species composition to gas emissions we distributed the measurement plots over the three dominating plant species at the field site, i.e., Typha latifolia, Phragmites australis and Juncus effusus. The fluxes of CO2 (total respiration), CH4 and N2O from vegetated plots ranged from 1.39 to 77.5 (g m−2 day−1), −377 to 1387 and −13.9 to 31.5 (mg m−2 day−1) for CO2, CH4 and N2O, respectively. Presence of vascular plants lead as expected to significantly higher total respiration rates compared with un-vegetated control plots. Furthermore, we found that the emission rates of N2O and CH4 was affected by presence of vascular plants and tended to be species-specific. We assessed the integrated greenhouse warming effect of the emissions using a Global Warming Potential over a 100-year horizon (GWP100) and it corresponded to 431 kg CO2 equivalents m−2 day−1. Assuming a 7-month season with conditions similar to the study period this is equal to 90 tonnes of CO2 equivalents annually. N2O emissions were responsible for one third of the estimated total greenhouse forcing. Furthermore, we estimated that the emission from the forested bog that was the precursor land to Magle constructed wetland amounted to 18.6 tonnes of CO2 equivalents annually. Hence, the constructed wetland has increased annual greenhouse gas emissions by 71.4 tonnes of CO2 equivalents for the whole area. Our findings indicate that management processes in relation to wetland construction projects must consider the primary function of the wetland in decreasing eutrophication, in relation to other positive aspects on for instance plant and animal life and recreation as well as possible negative climatic aspects of increased emissions of CH4 and N2O.  相似文献   

18.
AIMS: With concern surrounding the environmental impact of chemical tracers on the aquatic environment, this paper presents the initial evaluation of biotracers used to determine the effluent retention time, an important performance indicator, in a Free Water Surface Constructed Wetland. METHODS AND RESULTS: Production of the biotracers, coliphage MS2, and the bacteriophage of Enterobacter cloacae and antibiotic resistant endospores of Bacillus globigii is described in detail. Their subsequent use in three separate tracer experiments - January, March and June (2000) - revealed the variability of retention time with respect to effluent flow. The biotracer MS2 showed the constructed wetland had a retention time of 8-9 h at a mean discharge of 0.9 l s-1, increasing to 10-12 h at a mean discharge 0.3 l s-1. A similar retention of 9-10 h at a mean discharge of 0.3 l s-1 was calculated for the Ent. cloacae phage. In contrast, use of endospores revealed considerably longer retention times at these mean discharge rates; 12-24 h and 36-48 h, respectively. CONCLUSION: Biotracers could provide a useful and environmentally friendly technique to monitor effluent retention in constructed wetlands. At this stage the phage tracers appear particularly promising due to ease of isolation and recovery. SIGNIFICANCE AND IMPACT OF THE STUDY: Initial results are encouraging and have highlighted the potential of biotracers as alternatives to chemical tracers, even in microbially-rich waters.  相似文献   

19.
King  J.S.  Allen  H. Lee  Dougherty  Phillip  Strain  Boyd R. 《Plant and Soil》1997,195(1):171-184
The decomposition of plant-derived organic matter exerts strong control over the cycling of carbon and nutrients in terrestrial ecosystems and may be significantly altered by increased precipitation and nitrogen deposition associated with global change. It was the goal of this study to quantify the rate of belowground decomposition in an intact loblolly pine forest, and determine how this was affected by increased availability of water and nitrogen. A randomized complete-block factorial of irrigation and fertilization treatments was installed in an 8 yr old loblolly pine plantation in Scotland county, North Carolina. Fresh root samples of three size classes were buried in fiberglass mesh bags in January, 1994 and recovered at two-month intervals for two years. Samples were analyzed for percent mass remaining and contents of macro-nutrients. Roots decomposed in a two stage process: early in the incubation mass loss was correlated to size class and nutrient concentrations, but this correlation disappeared later in the incubation when rates of mass loss converged for all size classes. Decomposition was seldom affected by the irrigation and fertilization treatments, due to the buffering capacity of soil moisture and complex ecosystem-level responses to fertilization. Net mineralization of N, P, K, Ca, and Mg occurred in the smaller size classes of roots providing a source of these nutrients to the aggrading plantation for an estimated 2 to 15 years. The largest size class of roots was a sink for N, Ca, and Mg for the duration of this study, and was a source of P and K for an estimated 20 and 4 years, respectively. It is concluded that in moist temperate ecosystems belowground decomposition will be less affected by the projected increases in moisture and nutrient availability than will decomposition of the forest floor due to the buffering capacity of the soil. Further, small roots provide important sources of macro-nutrients for several decades to aggrading forests after large-scale disturbances such as harvesting of aboveground biomass.  相似文献   

20.
 The standard Monod model for microbial population dynamics in the chemostat is modified to take into consideration that cells can adapt to the change of nutrient concentration in the chemostat by switching between fast and slow nutrient uptake and growing modes with asymmetric thresholds for transition from one mode to another. This is a generalization of a modified Monod model which considers adaptation by transition between active growing and quiescent cells. Global analysis of the model equations is obtained using the theory of asymptotically autonomous systems. Transient oscillatory population density and hysteresis growth pattern observed experimentally, which do not occur for the standard Monod model, can be explained by such adaptive mechanism of the cells. Competition between two species that can switch between fast and slow nutrient uptake and growing modes is also considered. It is shown that generically there is no coexistence steady state, and only one steady state, corresponding to the survival of at most one species in the chemostat, is a local attractor. Numerical simulations reproduce the qualitative feature of some experimental data which show that the population density of the winning species approaches a positive steady state via transient oscillations while that of the losing species approaches the zero steady state monotonically. Received 4 August 1995; received in revised form 15 December 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号