首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Newman DW 《Plant physiology》1971,48(3):300-302
Barley (Hordeum vulgare) leaf tissue was either (a) exposed to continuous red light or (b) exposed to red, far red, or red followed by far red light. The fatty acid composition and incorporation of acetate-2-14C into linolenate were determined. Changes occurred in the fatty acid composition of dark-grown barley leaves regardless of whether the plants were subsequently exposed to red light or whether the tissue remained in the dark. Measurements were also made of the fatty acids of the coleoptile. Red light treatment did not reduce the lag period for the synthesis of linolenate when chlorophyll synthesis was inhibited. It appears that the desaturation process per se in the synthesis of linolenate is not phytochrome-mediated but may appear to be phytochrome mediated if, possibly, galactolipid and chlorophyll syntheses occur concomitantly.  相似文献   

2.
Members of the 14-3-3 family of proteins participate in signal transduction by modulating flux through various pathways. Potential subfunctionalization within this family has produced a suite of related proteins with diverse client interactions and discrete localization. The associated study assesses the biological roles of two specific 14-3-3 isoforms, using genetic, biochemical and physiological assays to ascertain potential nodes of interaction. Arabidopsis T-DNA insertion mutants representing the ν and μ isoforms exhibited a short, yet clear delay in flowering time on long days. Tests of hypocotyl growth inhibition under narrow bandwidth light indicated a hyposensitivity to red light, while responses to blue and far-red light were normal. These physiological tests suggest a mechanistic link between 14-3-3 proteins, red light sensing, and the pathways that control photoperiodic flowering. The precise entry point into the pathway was assessed using yeast two hybrid assays targeted against specific proteins active in the circadian oscillator, light transduction and photoperiodic flowering. Yeast two hybrid interaction was observed with CONSTANS (CO), and then confirmed with coimmunoprecipitation. Functional interaction with phyB leading to defects in flowering time and direct interaction with CONSTANS circumstantially places these specific 14-3-3 isoforms into the pathway that regulates the transition between vegetative and floral development.Key words: isoform specificity, protein interaction, phosphorylation, signaling  相似文献   

3.
Radioactivity translocation after [14C]-spermidine application over the third trifoliate leaf of soybean plants ( Glycine max . [L.] Merr, cv. Williams) was checked during the first 72 h of short day (SD) treatment to study the involvement of polyamines (PAs) in photoperiodic flowering induction. PAs and/or their metabolites were translocated from the supplied leaf to all parts of the plant. Radioactivity reached its highest concentration in the upper portion of the stem, i.e. the apical bud and the youngest leaf. After the beginning of the first inductive night, the detected radioactivity showed two peaks of maximal concentration. The first arose after the first inductive night, coinciding with the proper flowering induction process; the second one arose after the third inductive night, coinciding with the first morphological symptoms of the transition of vegetative meristems to the reproductive condition. Soluble free PAs showed a different balance in the apical bud of SD-induced plants compared with LD-non induced control plants. Soluble conjugated PAs were detected as traces. It is suggested that under flowering inductive conditions, PAs play a different role according to the stage of the flowering process. Thus, their translocation from the leaves to the axillary and apical buds might be related, in a first step, to the fact that they were part of the complex mechanism of the flowering signal, and in a second step, to the flower transition of vegetative buds.  相似文献   

4.
Cytokinins in photoperiodic induction of flowering in Chenopodium species   总被引:1,自引:0,他引:1  
Changes in cytokinin (zeatin – Z, zeatin riboside – ZR, isopentenyladenine – iP, isopentenyladenosine – iPA) levels were determined under light regimes inductive and non-inductive for flowering in leaves, stems, roots and apical parts of short-day Chenopodium rubrum and long-day Chenopodium murale. In leaves. stems and roots of both plant species the level of cytokinins (in C. rubrum of Z and ZR, in C. murale of Z. ZR, iP and iPA) decreased by about 50% during the dark period and increased again during the subsequent light period, No significant changes in cytokinin levels were observed in continuous light. In apical parts of C. rubrum cytokinin level (Z, ZR, iP) was dramatically increased (by 400–500%) at the end of the dark period and decreased to about the original value during the following light period, while no changes were observed in continuous light. In apical parts of C. murale the level of cytokinins doubled during floral induction consisting of 10 days of continuous light. A red (R) break (15 min at the 6th h of darkness), which prevents flowering in C. rubrum , has no significant effect on cytokinin levels in leaves at the end of darkness. Cytokinin levels increased 1 h after R and decreased again rapidly. On the other hand, the increase of cytokinin level in the apical parts of C. rubrum was largely prevented by the R break. These effects of R on cytokinin levels were not reverted by far-red (FR), while the effect on flowering was reverted. It may be concluded that there is no correlation between changes in cytokinin levels in leaves. Stems and roots and photoperiodic flower induction, as both species, representing different photoperiodic types, showed similar changes under the same light regime. The increase of cytokinin levels in apical parts of both photoperiodic species during floral induction suggests a role (increased cell division and branching) for cytokinins in apex evocation.  相似文献   

5.
6.
Ni M 《Cell research》2005,15(8):559-566
PLANT DE-ETIOLATION IS TRIGGERED BY LIGHT SIGNALS Light is arguably the most important resource for plants, and plants have evolved an array of photosensory pig- ments enabling them to develop optimally in a broad range of ambient light conditions. The ph…  相似文献   

7.
The effect of red and far red light having a low intensity on Escherichia coli growth was studied. The growth accelerated when the culture was irradiated with the light at a dose of 1--4 X 10(3) J/m2. When the light of the two spectral regions was used together, the effect depended on the dose and order of the irradiation. It is possible that receptors for red light and for far red light interact in E. coli cells.  相似文献   

8.
9.
InHordeum vulgare cultivar “Kirin-choku No. 1”, the final length of intact coleoptiles of totally etiolated seedlings was approximately twice as long as that of those grown under continuous red light. The fluence response curve of the latter was biphasic; the low-energy effect was saturated by red light of ca. 50 J m−2 which gave rise to about 40% of the maximum inhibition by continuous irradiation with red light of 1.2 W m−2, whereas the high-energy effect was induced by irradiation for 1 hr or longer. Coleoptiles of 3-day-old seedlings were most sensitive to light causing the low-energy effect, which was repeatedly red/far-red reversible. The growth inhibition was correlated to the photometrically measured percentage of Pfr so that the maximum effect was induced by red light of 50 J m−2 which transformed 70% of phytochrome to Pfr in the coleoptile tip. Wavelength dependence of the high-energy effect showed that monochromatic light of 400, 600 and 650 nm greatly inhibited the coleoptile growth, whereas light of 700 and 750 nm promoted it instead. The effect was also induced by intermittent irradiation with red light, and the more frequently the intermittent treatment was given, the more the growth was inhibited.  相似文献   

10.
The action of light on ribosome formation was examined in the cabbage seedlings, a system extensively used in the studies of anthocyanin synthesis. Ribosomes were extracted 18 h after the beginning of the irradiation and separated by sucrose gradient centrifugation. In the cotyledons of dark-grown cabbage seedlings, a brief red light induces an increase both in total ribosomes and in the fraction present as polysomes; the effect of red light is reversed by far red light, indicating the involvement of phytochrome in polysome formation in cabbage seedlings. Continuous red and continuous far red light are about equally effective in bringing about an increase of total ribosomes and of the polysome fraction. Streptomycin, which inhibits chlorophyll synthesis and chloroplast development, and enhances anthocyanin synthesis in cabbage seedlings, causes a decrease of total ribosomes and of the fraction present as polysomes. In hypocotyls, the red-far red reversibility is evident only for the polysome content and streptomycin does not decrease the polysome/monosomo ratio as it does in cotyledons.  相似文献   

11.
Successful sexual reproduction in plants relies upon the strict coordination of flowering time with favourable seasons of the year. One of the most important seasonal cues for the model plant Arabidopsis thaliana (Arabidopsis) is day length. Genes influencing flowering time in Arabidopsis have been isolated, some of which are involved in the perception and signalling of day length. This review discusses recent progress that has been made in understanding how Arabidopsis integrates environmental and internal signals to ensure a sharp transition to flowering and new insights on the role of the circadian clock in controlling the expression of genes that promote flowering in response to day length.  相似文献   

12.
Flowering in Arabidopsis thaliana is promoted by long-day (LD) photoperiods such that plants grown in LD flower earlier, and after the production of fewer leaves, than plants grown in short-day (SD) photoperiods. The early-flowering 3 ( elf 3) mutant of Arabidopsis , which is insensitive to photoperiod with regard to floral initiation has been characterized. elf 3 mutants are also altered in several aspects of vegetative photomorphogenesis, including hypocotyl elongation. When inhibition of hypocotyl elongation was measured, elf 3 mutant seedlings were less responsive than wild-type to all wavelengths of light, and most notably defective in blue and green light-mediated inhibition. When analyzed for the flowering-time phenotype, elf 3 was epistatic to mutant alleles of the blue-light receptor encoding gene, HY 4. However, when elf 3 mutants were made deficient for functional phytochrome by the introduction of hy 2 mutant alleles, the elf 3 hy 2 double mutants displayed the novel phenotype of flowering earlier than either single mutant while still exhibiting photoperiod insensitivity, indicating that a phytochrome-mediated pathway regulating floral initiation remains functional in elf 3 single mutants. In addition, the inflorescences of one allelic combination of elf 3 hy 2 double mutants form a terminal flower similar to the structure produced by tfl 1 single mutants. These results suggest that one of the signal transduction pathways controlling photoperiodism in Arabidopsis is regulated, at least in part, by photoreceptors other than phytochrome, and that the activity of the Arabidopsis inflorescence and floral meristem identity genes may be regulated by this same pathway.  相似文献   

13.
For dark-grown seedlings of Pharbitis nil capacity to flower in response to a single inductive dark period was established by 24 h white, far-red (FR) or ruby-red (BCJ) light and by a skeleton photoperiod of 10 min red (R)-24 h dark-10 min R. FR alone was ineffective without a brief terminal (R) irradiation, confirming that the form of phytochrome immediately prior to darkness is a crucial factor for flowering in Pharbitis. The magnitude of the flowering response was significantly greater after 24 h FR or white light (WL) (at 18° C and 27° C) than after two brief skeleton R irradiations, but the increased flowering response was not attributable to photosynthetic CO2 uptake because this could not be detected in seedlings exposed to 24 h WL at 18° C. Photophosphorylation could have contributed to the increased flowering response as photosystem I fluorescence was detectable in plants exposed to FR, BCJ, or WL, but there were large differences between flowering response and photosystem I capacity as indicated by fluorescence. We conclude that phytochrome plays a major role in photoresponses regulating flowering. There was no simple correlation between developmental changes, such as cotyledon expansion and chlorophyll formation during the 24-h irradiation period, and the capacity to flower in response to a following inductive dark period. Changes in plastid ultrastructure were considerable in light from fluorescent lamps and there was complete breakdown of the prolamellar body with or without lamellar stacking at 27 or 18° C, respectively, but plastid reorganization was minimal in FR-irradiated seedlings.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing from of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

14.
The low chlorophyll content of cotyledons of Pharbitis nil grown for 24 h in far-red light (FR) or at 18° C in white light from fluorescent lamps (WL) allows spectrophotometric measurement of phytochrome in these tissues. The (A) measurements utilize measuring beams at 730/802 nm and an actinic irradiation in excess of 90 s. The constancy of the relationship between phytochrome content and sample thickness confirms that, under these conditions of measurement, a true maximum phytochrome signal was obtained. These techniques have been used to follow changes in the form and amount of phytochrome during an inductive dark period for flowering. Following exposure to 24h WL at 18° C with a terminal 10 min red (R), Pfr was lost rapidly in darkness and approached zero in less than 1 h; during this period there was no change in the total phytochrome signal. Following exposure to 24 h FR with a terminal 10 min R, Pfr approached zero in 3 h, and the total phytochrome signal decreased by about half. The relevance of these changes to photoperiodic time measurement is discussed.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

15.
16.
17.
Greening of etiolated bean leaves in far red light   总被引:3,自引:11,他引:3       下载免费PDF全文
Eight-day-old dark-grown bean leaves were greened by prolonged irradiation with far red light. Growth, chlorophyll content, oxygen-evolving capacity, photophosphorylation capacity, chloroplast structure (by electron microscopy), and in vivo forms of chlorophyll (by low temperature absorption and derivative spectroscopy on intact leaves) were followed during the greening process. Chlorophyll a accumulated slowly but continuously during the 7 days of the experiment (each day consisted of 12 hours of far red light and 12 hours of darkness). Chlorophyll b was not detected until the 5th day. The capacity for oxygen evolution and photophosphorylation began at about the 2nd day. Electron microscopy showed little formation of grana during the 7 days but rather unfused stacks of primary thylakoids. The thylakoids would fuse to give grana if the leaves were placed subsequently in white light. The low temperature spectroscopy of intact leaves showed that the chlorophyll a was differentiated into three forms with absorption maxima near 670, 677, and 683 nanometers at −196 C during the first few hours and that these forms accumulated throughout the greening process. Small amounts of two longer wavelength forms with maxima near 690 and 698 nanometers appeared at about the same time as photosynthetic activity.  相似文献   

18.
Corn ( Zea mays L. cv . OP Golden Bantum) was grown under various low irradiances of red light (Pfr/Ptot∼ 0.8) and under high irradiance far-red light containing low amounts of red light (Pfr/Ptot∼ 0.05–0.15). Parameters of chloroplast development such as pigments, membrane polypeptides and infrastructure were compared among the various light sources. Results indicate that the requirement for phytochrome is saturated at low ratios of Pfr/Ptot (<5% Pfr). When the phytochrome requirement is saturated, pigment synthesis assumes major importance and chloroplasi development is directly related to red light irradiance.  相似文献   

19.
A method of cultivation and effectiveness of different light sources and light regimes in photoperiodic induction of flowering in non-rosette long-day plantChenopodium murale L. ecotype 197 are described. Under the described conditions of cultivation 5 days, of continuous light produced by incandescent bulbs (TESLA 74 3x40 W, red 4.9 μWcm-2nn-1, far-red 7.4 μWcn-2nm-1, blue 0.25 μW cm-2nn-1) induced flowering in the majority of plants.  相似文献   

20.
Cell division contributing to longitudinal growth of the shoot apex was investigated inChenopodium rubrum in segments marked by the axils of leaf primordia. Plants treated with two short days (16h of darkness and 8h of light) were compared with two non-induced controls (cultivated in continuous light or treated by alternations of 8 h of darkness and 4 h of light for two days). During the short-day treatments the rate of cell division contributing to the longitudinal growth decreases in all segments of the shoot apex irrespective of whether the darkness was given in inductive or non-inductive photoperiods. The rate of cell division contributing to longitudinal growth increases in the upper internodes of the shoot apex after the termination of the photoperiodic treatment and transfer of the plants to continuous light. However, cell division remains inhibited in the lowest segment of the shoot apex. This inhibition in the differentiating parts of the shoot apical meristem is a direct consequence of photoperiodic induction. It is supposed that this inhibition is related to evocation similarly as the well-known phenomenon of stimulation of cell division in the apical dome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号