首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gene for the thymidine kinase (TK) of Herpes simplex virus type 1 (HSV-1) is located in the KpnI m and BamHI p fragments of the genome (Wigler et al., Cell 11, 223-232 (1977)). These fragments have been inserted into the EcoRI and BamHI sites, respectively, of plasmid pBR322, and propagated in E.coli. The TK gene contained in the recombinant plasmids was shown to be biologically active when introduced into TK- mouse L cells. Detailed restriction site maps of the BamHI p fragment have been constructed and the approximate location of the TK gene has been determined. Mouse cells transformed with cloned HSV-1 tk+ DNA produced HSV-1-specific thymidine kinase; superinfection with HSV-1 tk- virus increased the level of TK activity tenfold, suggesting that the BamHI p sequences present in transformed cells respond to virus-encoded regulatory gene product(s).  相似文献   

3.
Herpes Simplex Virus type 1 thymidine kinase (HSV 1 TK) is a key target for antiviral therapy and it phosphorylates a broad spectrum of nucleosides and nucleotides. We report the results from kinetic and inhibition experiments with HSV 1 TK, and show that there is a preferred, but not exclusive, binding order of substrates, i.e. dT binds prior to ATP. Furthermore, the results provide new informations on the mechanism of binding suggesting that HSV1 TK undergoes conformational changes during the catalytic cycle.  相似文献   

4.
5.
We have determined the complete nucleotide sequence of the thymidine kinase gene of herpes simplex virus (HSV) type 2 strain 333. The sequence of the thymidine kinase gene exhibits an open translational reading frame of 1,128 nucleotides encoding a protein of 376 amino acids. The DNA sequence was compared with that of the HSV type 1 thymidine kinase gene from strain MP (S. L. McKnight, Nucleic Acids Res. 8:5949-5964, 1980) and from strain CL 101 (M. J. Wagner, J. A. Sharp, and W. C. Summers, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445, 1981) to assess the extent of intra- and intertypic variation for one viral gene. The nucleotides encoding the structural gene varied 1.7% between the two HSV type 1 strains and 19% between HSV type 1 and HSV type 2, which translated to differences in the amino acid sequence of the two proteins of 1.9 and 27%, respectively. The DNA encoding the 5' regulatory sequences appeared to be more conserved than the DNA coding for the structural gene, and the DNA at the 3' end of the gene was the least homologous.  相似文献   

6.
Summary Two plasmids containing either the complete thymidine kinase gene of Herpes simplex virus type I (pSK2) or the gene without the remote control sequence (pSK1) just behind the lac promoter and the first codons of the lacZ gene were constructed. Both plasmids efficiently transform mouse Ltk- cells as well as E. coli tk- cells to the Tk+ phenotype and are well suited for plasmid rescue from transformed mouse cells by direct functional selection for tk expression using a tk - mutant of E. coli C600.  相似文献   

7.
The herpes simplex virus type 2 thymidine kinase gene has been mapped to a position colinear with the herpes simplex virus type 1 thymidine kinase gene and cloned within a 4.0-kilobase fragment in pBR 322.  相似文献   

8.
D L Hare  J R Sadler  J L Betz 《Gene》1984,32(1-2):117-128
A plasmid-borne Herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) gene (tk) was expressed in Escherichia coli by inserting a 203-bp lacL8/UV5 promoter-operator segment, in frame, 53 bp 5' to the native tk translational start codon. The hybrid gene created by this fusion encodes a polypeptide which has 25 additional amino acids on the amino terminus of the HSV-1 TK protein and phenotypically complements a tdk- mutation of E. coli. This fusion polypeptide has been characterized by maxicell, immunoprecipitation, and native gel techniques, and its activity is inhibited by anti-HSV-1 antibody. In a tk expressor strain containing a F' lacIq (which overproduces the lactose repressor), the isopropyl-beta-D-thiogalactoside (IPTG) causes greater than 1000-fold coordinate induction of the plasmid-encoded TK and chromosomal beta-galactosidase activities. Pulse-chase induction demonstrates the fused TK polypeptide to be as stable as beta-galactosidase. HSV-1 tk-specific RNA isolated from this bacterial strain has a short half-life characteristic of bacterial messages.  相似文献   

9.
Abstract

Herpes simplex virus type 1 (HSV-1) infections affect about two-thirds of the world population, and the standard treatment consists of acyclovir (ACV) and its analogs, which interact with thymidine kinase (TK) blocking viral replication. Lately, the emergence of ACV-resistant strains has been reported, especially associated with TK mutations. In this context, ACV therapy fails against isolates encoding Y172C and Y53H/R163H TK mutants, but the molecular mechanism of drug resistance remains unclear. Thus, we examined the effects of these mutations on ACV and the cofactor ATP binding through molecular modeling approaches. We showed that Y172C prevents the anchoring of the aromatic ring of ACV through π–π stacking interactions, leading to an inversed binding mode and different interactions. On the other hand, Y53H/R163H remarkably affected the cofactor binding mode which shifted away from its binding site and also influenced the interaction network of ACV. This is likely due to the loss of polar interactions with R163 residue. Unlike what was observed in the wild-type complex, both drug and cofactor binding poses were not well positioned to allow the phosphorylation reaction which explains the resistance observed. Moreover, energy analysis corroborated the experimental data and showed lower theoretical affinity of ACV with mutant enzymes resulted from energetic loss in polar solvation in Y172C and electrostatic terms in Y53H/R163H mutant enzyme. Therefore, our study shed light on the resistance mechanism toward ACV of two mutant TKs identified in clinical HSV-1 strains and may further support the development of new anti-herpetic drugs to treat resistant infections.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
The structure of Herpes simplex virus type 1 thymidine kinase (TK(HSV1)) is known at high resolution in complex with a series of ligands and exhibits important structural similarities to the nucleoside monophosphate (NMP) kinase family, which are known to show large conformational changes upon binding of substrates. The effect of substrate binding on the conformation and structural stability of TK(HSV1), measured by thermal denaturation experiments, far-UV circular dichroism (CD) and fluorescence is described, and the results indicate that the conformation of the ligand-free TK(HSV1) is less ordered and less stable compared to the ligated enzyme. Furthermore, two crystal structures of TK(HSV1) in complex with two new ligands, HPT and HMTT, refined to 2.2 A are presented. Although TK(HSV1):HPT does not exhibit any significant deviations from the model of TK(HSV1):dT, the TK(HSV1):HMTT complex displays a unique conformationally altered active site resulting in a lowered thermal stability of this complex. Moreover, we show that binding affinity and binding mode of the ligand correlate with thermal stability of the complex. We use this correlation to propose a method to estimate binding constants for new TK(HSV1)substrates using thermal denaturation measurements monitored by CD spectroscopy. The kinetic and structural results of both test substrates HPT and HMTT show that the CD thermal denaturation system is very sensitive to conformational changes caused by unusual binding of a substrate analog.  相似文献   

11.
We constructed lambda recombinants containing the Harvey murine sarcoma virus genome and the thymidine kinase (tk) gene of herpes simplex virus type 1 linked to each other. The tk gene was located in a position downstream from both the long terminal repeat and the src gene of Harvey murine sarcoma virus. The DNAs of the lambda recombinants were used to transfect NIH3T3 mouse fibroblasts in order to obtain Harvey murine sarcoma virus DNA-induced foci of transformed cells. The transformed foci were superinfected with a helper-independent retrovirus, and new individual retrovirus were isolated from the superinfected foci. The new viruses could induce focus formation on NIH3T3 cells and could convert NIH3T3(TK-) cells into TK+ cells by carrying the herpes simplex virus type 1 tk gene into the TK- cells. From virus-infected cells, we isolated nonproducer foci on NIH3T3 cells and TK+ transformants on NIH3T3(TK-) cells containing one such new viral genome coding for the dual properties. The new retroviral sequence in the nonproducer cells could be rescued into virus particles at high titers by superinfection with a helper-independent retrovirus. A hybridization analysis indicated that the recombinant virus contained both the Harvey murine sarcoma virus src sequence and the tk gene sequence in a single RNA species approximately 4.9 kilobases long. We concluded that retroviruses can be used as true vectors for genes other than genes that lead to oncogenesis.  相似文献   

12.
Lu Q  Hwang YT  Hwang CB 《Journal of virology》2002,76(11):5822-5828
To examine whether the exonuclease activity intrinsic to the polymerase (Pol) of herpes simplex virus type 1 can influence the mutational spectra, we applied the denaturing gradient gel electrophoresis (DGGE) system combined with sequencing to characterize thymidine kinase mutants isolated from both the wild-type virus and a mutant deficient in exonuclease activity, Y7. Wild-type viruses produced predominantly frameshift mutations (67%), whereas Y7 replicated a significantly lower proportion of frameshifts (21%; P < 0.005). Furthermore, the majority of substitutions were transitional changes in both groups, although they distributed differently. The implications of these findings are discussed.  相似文献   

13.
14.
Thymidine kinase from herpes simplex virus type 1 (ATP:thymidine 5'-phosphotransferase; EC 2.7.1.21) has been purified from an overexpression system and crystallized against ammonium sulfate by using the hanging-drop technique. The tetragonal crystals are of space group P4122 or P4322, and have unit cell dimensions a = b = 84 A, c = 180 A.  相似文献   

15.
An enzymatic assay for herpes virus simplex type 1 thymidine kinase (HSV-TK) that was sensitive enough to quantitate intracellular levels of enzyme transiently expressed after transfection of HSV-TK vectors into TK-deficient cells using the DNA-calcium phosphate coprecipitation technique is described. TK activity in extracts of transfected cells was determined by binding of [methyl-3H]thymidylate product to thin layers of polyethyleneimine (PEI)-impregnated cellulose. The assay used high-specific-activity [methyl-3H]thymidine as substrate, which required removal of anionic material on a column of PEI-cellulose to enhance the signal-to-noise ratio. The assay was linear over a wide range with respect to the amount of HSV-TK plasmid transfected or content of HSV-TK enzyme in cell extracts. To validate the assay in transient expression experiments, HSV-TK and chloramphenicol acetyltransferase (CAT) plasmids were cotransfected into NIH/3T3 tk- fibroblasts. Transient TK and CAT levels were concordant in cell extracts prepared from replicate plates of transfected cells. Normalizing the transient TK activity for CAT activity from the cotransfected "internal standard" CAT plasmid improved precision significantly, reducing the sample-to-sample coefficient of variation from 41 to 19%. CAT normalization reduced experimental variability mostly by correcting outlying results in transfection efficiency. The HSV-TK reporter gene system based on TK enzymatic assay was thus subject to experimental variation similar to that of the well-established CAT reporter function, demonstrating its utility in transient gene expression analysis.  相似文献   

16.
Summary This study presents the first evidence that the 5 promoter region of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene (G-3-PD) promoter will permit expression of an adjacent foreign gene. The S. cerevisiae G-3-PD promoter was linked to the herpes simplex virus — thymidine kinase (HSV-TK) gene in a shuttle plasmid capable of autonomous replication in both yeast and Escherichia coli. Since the HSV-TK gene promoter is not functional in yeast, yeast cells containing these plasmids will express the HSV-TK gene and synthesize thymidine kinase only if the yeast promoter fragment is fused to the HSV-TK gene in the proper orientation. The 5 flanking sequences necessary for the expression of heterologous eukaryotic genes in S. cerevisiae are discussed.  相似文献   

17.
The expression of the gene encoding herpes simplex virus thymidine kinase (HSV-TK) in eukaryotic cells confers sensitivity to antiherpetic drugs such as acyclovir and ganciclovir. This property has been proposed for use in gene therapy approaches to kill either cancer cells or HIV-infected cells. Several animal experiments have shown the regression of tumors after in vivo transfer of the HSV-TK gene followed by ganciclovir treatment. Furthermore, CD4+T cells harboring the HSV-TK gene under the control of HIV regulatory sequences are protected from HIV spreading in the presence of acyclovir. Thus, the HSV-TK gene has potential applications in gene therapy for the treatment of cancer and HIV infection.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号