首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circular dichroism (CD) and immunochemical measurements have been used to examine conformational properties of COOH-terminal fragments 121-316, 206-316 and 225(226)-316 of thermolysin, and to compare these properties to those of native thermolysin and thermolysin S, the stable partially active two-fragment complex composed of fragments 5-224(225) and 225(226)-316. In aqueous solution at neutral pH, all the COOH-terminal fragments attain a native-like conformation, as judged both by the content of secondary structure deduced from far-ultraviolet CD spectra and by the recognition of rabbit polyclonal antibodies specific for the COOH-terminal region in native thermolysin. The three fragments showed reversible cooperative unfolding transitions mediated by both heat and guanidine hydrochloride (Gdn X HCl). The phase transition curves were analyzed for Tm (temperature of half-denaturation) and Gibbs free energies (delta GD) of unfolding from native to denatured state. The observed order of thermal stability is 225(226)-316 less than or equal to 206-316 less than 121-316 less than thermolysin S less than thermolysin. The ranking of delta GD values for the three fragments correlates with the size of each fragment. Competitive binding studies by radioimmunoassay using 14C-labeled thermolysin and affinity purified antibodies specific for native antigenic determinants in segment 206-316 of native thermolysin indicate that the COOH-terminal fragments adopt native-like conformations which are in equilibrium with non-native conformations. These equilibria are shifted towards the native state as the fragment size increases from 225(226)-316, to 206-316, to 121-316. Fragment 225(226)-316, when combined with fragment 5-224(225) in the thermolysin S complex, adopts a more stable native-like conformation and becomes much more antigenic. It has been shown that the degree of antigenicity of COOH-terminal fragments towards thermolysin antibodies correlates directly with their conformational stability. The results of this study are discussed in relation to the recently proposed correlation between antigenicity and segmental mobility of globular proteins.  相似文献   

2.
The 21-residue fragment Tyr-Gly-Ser-Thr-Ser-Gln-Glu-Val-Ala-Ser-Val-Lys-Gln-Ala-Phe-Asp-Ala-Val- Gly-Val-Lys, corresponding to sequence 296-316 of thermolysin and thus encompassing the COOH-terminal helical segment 301-312 of the native protein, was synthesized by solid-phase methods and purified to homogeneity by reverse-phase high performance liquid chromatography. The peptide 296-316 was then cleaved with trypsin at Lys307 and Staphylococcus aureus V8 protease at Glu302, producing the additional fragments 296-307, 308-316, 296-302, and 303-316. All these peptides, when dissolved in aqueous solution at neutral pH, are essentially structureless, as determined by circular dichroism (CD) measurements in the far-ultraviolet region. On the other hand, fragment 296-316, as well as some of its proteolytic fragments, acquires significant helical conformation when dissolved in aqueous trifluoroethanol or ethanol. In general, the peptides mostly encompassing the helical segment 301-312 in the native thermolysin show helical conformation in aqueous alcohol. In particular, quantitative analysis of CD data indicated that fragment 296-316 attains in 90% aqueous trifluoroethanol the same percentage (approximately 58%) of helical secondary structure of the corresponding chain segment in native thermolysin. These results indicate that peptide 296-316 and its subfragments are unable to fold into a stable native-like structure in aqueous solution, in agreement with predicted location and stabilities of isolated subdomains of the COOH-terminal domain of thermolysin based on buried surface area calculations of the molecule.  相似文献   

3.
The existence, location, and characteristics of protein domains have been investigated by studying the structural properties of the carboxyl-terminal cyanogen bromide fragment 206–316 of thermolysin. As judged by far-uv CD measurements in aqueous solution under neutral conditions, the fragment attains a substantial degree of α-helical structure comparable to that exhibited by the corresponding region in native thermolysin. By radioimmunoassay techniques, a considerable degree of nativeness of fragment conformation has been deduced from comparison of the relative affinities of thermolysin and fragment 206–316 for antibodies specific for the 206–316 region in the intact protein. The fragment shows noteworthy stability to protein denaturants. The overall spectroscopic and immunochemical data suggest that fragment 206–316 is able to refold into a stable, nativelike structure independently from the rest of the molecule, thus providing support for the view that this fragment may contain a substantial part, if not all, of a protein domain structure.  相似文献   

4.
The pH and ionic strength dependence of conformation of the COOH-terminal fragment 206–316 (fragment FII) of thermolysin was monitored by far-uv CD and difference absorption measurements. This fragment was shown previously to possess the properties of a protein domain, i.e., able to refold into a stable nativelike structure [Fontana, A., Vita, C. & Chaiken, I. M. (1983) Biopolymers 22 , 69–78]. Analysis of the CD spectra in the pH range of 1–12 indicated that near pH 1, the conformation of fragment FII appears to be in an intermediate state (H) between the fully unfolded one (U) [the guanidine hydrochloride (Gdn · HCl)-induced unfolded state] and the nativelike state (N—that attained at neutral pH). Quantitative analysis of secondary structure from CD spectra revealed that state H at 4°C is characterized by some 30% α-helical structure, compared to 47% for state N. The heat- and Gdn · HCl-mediated unfolding transitions of state H were fully reversible and characterized by little cooperativity, which is taken as an indication that state H corresponds to several species possessing different, and low, conformational stabilities. The midpoint transition from state H to N occurs near pH 2.5, implying that the acid transition results from the titration of carboxyl groups of the fragment with anomalously low pK, as would be expected for groups involved in specific salt bridges. Fragment FII at pH 1 (state H) may be induced to exhibit nearly the same degree of helicity of state N simply by increasing the ionic strength of the solution, thus reducing the repulsive interactions between positive charges within the highly charged fragment at pH 1. The results obtained emphasize the role of electrostatic interactions in the folding and stability of fragment FII and suggest a mechanism of folding of the fragment from U to N involving an intermediate state characterized by an assembly of fluctuating α-helices.  相似文献   

5.
Semisynthesis of carboxy-terminal fragments of thermolysin   总被引:2,自引:0,他引:2  
Enzyme-catalyzed synthesis of two polypeptide fragments, one of which is obtained by chemical synthesis, in the presence of proteolytic enzymes and in aqueous organic solvents constitutes a convenient procedure for the synthesis of proteins and their analogs. This novel semisynthetic procedure was investigated for preparing COOH-terminal fragments of the metallo-protease thermolysin. Fragment 205-316, obtained by autolysis of the protein in the presence of EDTA, was first cleaved selectively with Staphylococcus aureus V8 protease at the level of the single Glu302 residue into fragments 205-302 and 303-316. Upon incubation for 2-5 days of fragment 205-302 with a 5-fold excess of peptide 303-316, prepared by solid phase synthesis, with V8-protease in 0.1 M ammonium acetate, pH 6.0, containing 50% glycerol as organic cosolvent, enzyme-catalyzed reformation of the peptide bond was achieved in yields up to approximately 90% (based on fragment 205-302). The same procedure was used to prepare also the thermolysin fragments 205-315 and 205-311 by enzymatic coupling of fragment 205-302 to peptide 303-315 or 303-311, these last prepared by proteolytic digestion of the synthetic peptide 303-316. This procedure of semisynthesis opens up an approach for the site-directed modification of the tetrahelical COOH-terminal fragment 205-316 of thermolysin at the level of its helical segment encompassing residues 301-312 in the native, intact protein. Such analogs will be useful for examining structure-folding-stability relationships in this folded fragment possessing domain-like characteristics.  相似文献   

6.
C Vita  A Fontana  I M Chaiken 《Biochemistry》1982,21(9):2016-2022
The extent of nativeness of the stable conformation of the thermolysin fragment containing the carboxyl-terminal third of the protein (from residues 206 to 316, denoted fragment FII) was examined by its immunogenic and antigenic characteristics. Antisera elicited in rabbits by either intact thermolysin or fragment FII were fractionated serially on two affinity columns, containing either the isolated fragment or intact protein. Both sera gave rise to substantial antibody populations which recognized the fragment FII region in native thermolysin. The relative affinities of these specific antibodies for isolated fragment FII and intact thermolysin were evaluated by radioimmunoassay, by assessing the relative extents of competition by these for binding of either 14C-labeled thermolysin or 14C-labeled fragment FII to each antibody population. Competition by fragment FII was substantial, though generally weaker than that for intact thermolysin, for antibody binding of both labeled antigens. The data demonstrate that the stable structure of fragment FII as observed spectroscopically likely is one which possesses conformational features similar to those of this region in intact thermolysin, but with perhaps less conformational rigidity. The results support the view that the region of thermolysin composed primarily of residues 206-316 is a conformational domain of the intact protein and that isolated fragment FII retains domain-like characteristics of stable and native-like conformation.  相似文献   

7.
Previous studies from this laboratory have shown that the thermolysin fragment 121–316, comprising entirely the“all-α” COOH-terminal structural domain 158–316, as well as fragment 206–316 (fragment FII) are able to refold into a native-like, stable structure independently from the rest of the protein molecule. The present report describes conformational properties of fragments 228–316 and 255–316 obtained by chemical and enzymatic cleavage of fragment FII, respectively. These subfragments are able to acquire a stable conformation of native-like characteristics, as judged by quantitative analysis of secondary structure from far-ultra-violet circular dichroism spectra and immunochemical properties using rabbit anti-thermolysin antibodies. Melting curves of the secondary structure of the fragments show cooperativity with a temperature of half-denaturationT mof 65–66°C. The results of this study provide evidence that it is possible to isolate stable supersecondary structures (folding units) of globular proteins and correlate well with predictions of subdomains of the COOH-terminal structural domain 158–316 of thermolysin.  相似文献   

8.
The COOH-terminal cyanogen bromide fragment 206-316 of thermolysin has been shown to possess protein domain characteristics that are able to refold into a stable native-like structure (Fontana et al., 1982). We now report the results of limited proteolysis of this fragment with the aim of identifying the minimum size of a COOH-terminal fragment of thermolysin that is able to fold by itself. Proteolysis with subtilisin, chymotrypsin, thermolysin and trypsin allowed us to isolate to homogeneity eight different subfragments, which can be grouped in two sets of peptides, i.e. (218-222)-316 and (252-255)-316. These subfragments are able to acquire a stable conformation of native-like characteristics, as judged by quantitative analysis of secondary structure from far-ultraviolet circular dichroism spectra and immunochemical properties using rabbit anti-thermolysin antibodies. In addition, even the smallest fragment isolated (sequence 255-316) shows co-operative and reversible unfolding transitions mediated by heat (tm 65 degrees C) and guanidine hydrochloride (midpoint transition at 2.5 M denaturant), as often observed with globular proteins. From the kinetics of the proteolytic digestion and analysis of the isolated subfragments, it is concluded that proteases lead to a stepwise degradation of fragment 206-316 from its NH2-terminal region, leading to the highly helical fragment (252-255)-316, quite resistant to further proteolytic digestion. The results of this study provide evidence that it is possible to isolate stable supersecondary structures of globular proteins and correlate well with predictions of subdomains of the COOH-terminal structural domain of thermolysin.  相似文献   

9.
Sedimentation analysis in the analytical ultracentrifuge has been used to characterize the size and shape of thermolysin and a number of its fragments obtained by chemical or enzymatic cleavage of the protein. Four fragments (121-316, 206-316, 225/226-316 and 255-316) originate from the C-terminal domain, and two (1-155 and 1-205) from the N-terminal domain of the intact molecule. In aqueous solution at neutral pH the hydrodynamic properties of the C-terminal fragments, except 255-316, are consistent with compact homogeneous monomers. Fragment 255-316 is a monomeric species below 0.08 mg/ml concentration and forms a dimer above this concentration. Dimerization does not lead to changes in fragment conformation, as determined by far-ultraviolet circular dichroic measurements, but to an increase of 5.6 degrees C (to 68.2 degrees C at 1.0 mg/ml) in the temperature for thermal unfolding and a corresponding increase of 4.6 kJ/mol in the free energy of unfolding. Fragments derived from the N-terminal domain show a strong tendency to form high-molecular-mass aggregates. Previous experiments utilizing circular dichroic measurements and antibody binding data suggested that the C-terminal fragments listed above are able to refold in aqueous solution at neutral pH into a stable conformation of native-like characteristics [Dalzoppo, D., Vita, C. & Fontana, A. (1985) J. Mol. Biol. 182, 331-340] (and references cited therein). Present data establish that all these C-terminal fragments are globular monomeric species in solution (at concentrations approximately 0.1 mg/ml) and thus represent 'isolated' domains (or subdomains) with intrinsic conformational stability typical of small globular proteins.  相似文献   

10.
Formiminotransferase-cyclodeaminase denatured in 6 M guanidine hydrochloride (Gdn.HCl) refolds and reassembles to the native octameric structure upon dilution into buffer. Both enzymic activities are recovered to greater than 90%, and the renatured enzyme "channels" the formiminotetrahydropteroylpentaglutamate intermediate. Under conditions where the two activities are recovered simultaneously, the rate-limiting step in reactivation is first order with respect to protein, with k = 1.9 X 10(-5) s-1 at 22 degrees C and delta E approximately equal to 15 kcal mol-1. In the presence of 1.5 M urea, renaturation is arrested at the level of dimers having only transferase activity. Subsequent dialysis to remove the urea leads to recovery of deaminase activity and formation of octamer. Kinetic studies with mono- and pentaglutamate derivatives of the folate substrates demonstrated that native and renatured enzyme as well as deaminase-active dimers [Findlay, W. A., & MacKenzie, R. E (1987) Biochemistry 26, 1948-1954] have much higher affinity for polyglutamate substrates, while the transferase-active dimers do not. These results indicate that the transferase activity is associated with one type of subunit-subunit interaction in the native tetramer of dimers and that the polyglutamate binding site and the deaminase activity are associated with the other interface. A dimeric transferase-active fragment generated by limited proteolysis of the native enzyme can also be renatured from 6 M Gdn.HCl, confirming that it is an independently folding domain capable of reforming one type of subunit interaction.  相似文献   

11.
Jourdan M  Searle MS 《Biochemistry》2000,39(40):12355-12364
Peptide fragments corresponding to the N- and C-terminal portions of bovine ubiquitin, U(1-35) and U(36-76), are shown by NMR to associate in solution to form a complex of modest stability (Kassn approximately 1.4 x 10(5) M(-1) at pH 7.0), with NMR features characteristic of a nativelike structure. The complex undergoes cold denaturation, with temperature-dependent estimates of stability from NMR indicating a DeltaC(p) degrees for fragment complexation in good agreement with that determined for native ubiquitin, suggesting that fragment association results in the burial of a similar hydrophobic surface area. The stability of the complex shows appreciable pH dependence, suggesting that ionic interactions on the surface of the protein contribute significantly. However, denaturation studies of native ubiquitin in the presence of guanidine hydrochloride (Gdn.HCl) show little pH dependence, suggesting that ionic interactions may be "screened" by the denaturant, as recently suggested. Examination of the conformation of the isolated peptide fragments has shown evidence for a low population of nativelike structure in the N-terminal beta-hairpin (residues 1-17) and weak nascent helical propensity in the helical fragment (residues 21-35). In contrast, the C-terminal peptide (36-76) shows evidence in aqueous solution, from some Halpha chemical shifts, for nonnative phi and psi angles; nonnative alpha-helical structure is readily induced in the presence of organic cosolvents, indicating that tertiary interactions in both native ubiquitin and the folded fragment complex strongly dictate its structural preference. The data suggest that the N-terminal fragment (1-35), where interaction between the helix and hairpin requires the minimum loss of conformational entropy, may provide the nucleation site for fragment complexation.  相似文献   

12.
Nonnative protein structures having a compact secondary, but not rigid tertiary structure, have been increasingly observed as intermediate states in protein folding. We have shown for the first time during acid-induced unfolding of xylanase (Xyl II) the presence of a partially structured intermediate form resembling a molten globule state. The conformation and stability of Xyl II at acidic pH was investigated by equilibrium unfolding methods. Using intrinsic fluorescence and CD spectroscopic studies, we have established that Xyl II at pH 1.8 (A-state) retains the helical secondary structure of the native protein at pH 7.0, while the tertiary interactions are much weaker. At variance, from the native species (N-state), Xyl II in the A-state binds 1-anilino-8-sulfonic acid (ANS) indicating a considerable exposure of aromatic side chains. Lower concentration of Gdn HCl are required to unfold the A-state. For denaturation by Gdn HCl, the midpoint of the cooperative unfolding transition measured by fluorescence for the N-state is 3.5 +/- 0.1 M, which is higher than the value (2.2 +/- 0.1 M) observed for the A-state at pH 1.8. This alternatively folded state exhibits certain characteristics of the molten globule but differs distinctly from it by its structural stability that is characteristic for native proteins.  相似文献   

13.
Incubation of the neutral metalloendopeptidase thermolysin at pH 7.2 in the presence of EDTA and/or low concentrations of calcium ions produces fast enzyme inactivation as a result of autolysis. The 'nicked' protein is a folded species composed of three tightly associated protein fragments. Dissociation of this complex can be achieved under denaturing conditions, such as gel filtration on a column equilibrated with 5 M guanidine hydrochloride or reverse-phase high-performance liquid chromatography (HPLC) at acidic pH. The positions of the peptide bond cleavages were defined by isolation of the individual fragments by HPLC and their characterization by amino acid analysis after acid hydrolysis, end-group determination and partial amino acid sequencing. The results of these analyses indicated that the nicked protein is composed of fragments 1-196, 197-204 and 205-316 and thus that the corresponding sites of limited proteolysis occur at the polypeptide chain loop involved in the binding of Ca(4) in native thermolysin [Matthews, B. W., Weaver, L. H. and Kester, W. R. (1974) J. Biol. Chem. 249, 8030-8044]. The overall conformational properties of nicked thermolysin are quite similar to those of the intact protein, as judged by spectroscopic measurements and by the fact that rabbit antibodies against native thermolysin recognize and precipitate the nicked protein in immunodiffusion assays. The nicked protein was much less stable to heat and unfolding agents than intact thermolysin. These results contribute to a better knowledge of the molecular mechanism of stabilization of native thermolysin by the four bound calcium ions and demonstrate that the function of Ca(4) is to stabilize the loop 190-205 on the surface of the molecule against autolysis.  相似文献   

14.
Pennisetin, the alcohol soluble storage protein of pearl millet (Pennisetum americanum), was isolated in a homogeneous state. The intrinsic viscosity [n] of this protein was found to be in the range of 16.5-17.7 ml/g in 70% (v/v) aqueous ethanol. The [eta] changed marginally when temperature was increased from 20 to 70 degrees C and also in the presence of 10 mM NaCl. The data indicated that pennisetin was a rigid, rod shaped asymmetric hydrodynamic particle with molecular dimensions in the range of 301 x 14.4 A - 317.7 x 14.2 A. During denaturation with guanidine hydrochloride (Gdn.HCl), the intrinsic viscosity of pennisetin increased from 16 to 25ml/g with a mid point at 3.6 M of the denaturant. The native protein structure was unfolded in 6 M Gdn.HCl as shown by the exposure of aromatic amino acid residues buried in the native state and this transition was found to be reversible. The intrinsic viscosity of pennisetin in 5.9 M Gdn.HCl corresponded to Mr 25,000 which was comparable to that determined by SDS-PAGE.  相似文献   

15.
With the purpose of establishing whether, as a general rule, regions of a protein chain that are helical in the native structure maintain, at least partially, the same helical structure when isolated in solution, we have prepared the 1-23 fragment of human hemoglobin alpha-chain, and studied its conformational properties in aqueous solution by CD and 1H-NMR. From the analysis of CD and NMR spectral changes with temperature, salt and addition of trifluoroethanol (TFE) it can be concluded that the 1-23 peptide forms a measurable population (18% at 22 degrees C (pH 5.6) TFE/H2O, 30:70 (v/v)) of an alpha-helix structure that spans the same residues that are helical in the native protein (namely, 6 to 17). These results, taken together with similar ones obtained previously in the 1-19, 21-42 and 50-61 RNAase fragments, support the idea that no helices other than the native ones are actually formed in solution by protein fragments. This implies that the final helical structure of a protein is present from the very beginning of the folding process, and also that such elements of secondary structure can act as primary nucleation centers.  相似文献   

16.
D E Isenman  D Lancet  I Pecht 《Biochemistry》1979,18(15):3327-3336
The in vitro folding kinetics of a fragment corresponding to an intact dimer of the Cgamma3 domain of human IgG1 (pFc') were monitored via the large changes in tryptophan fluorescence which accompany these processes. In going from the guanidine hydrochloride (Gdn.HCl) induced unfolded state (4.0 M Gdn.HCl) to the native state (0.5 M Gdn.HCl), three well-separated first-order processes were observed having time constants of 5, 50, and 350 s and roughly equal amplitudes. These values were concentration independent, a fact consistent with there being no fluorescence change accompanying dimerization. These time constants are one to two orders of magnitude slower than those observed for proteins of similar size such as ribonuclease or cytochrome c, most probably reflecting the complex processes involved in forming the correct beta-sheet arrangement of immunoglobulin domains. The corresponding unfolding transition is biphasic having time constant values of 50 and 500 s, the latter comprising 80% of the fluorescence change. These data indicate the presence of at least one species with intermediate fluorescence along the unfolding pathway. Gdn.HCl concentration jumps were also performed over various intervals within the transition zone. The results are not consistent with a fully reversible mechanism. In the absence of the intrachain disulfide bond, pFc' exists in an unfolded state even at 0.5 M Gdn.HCl. In a concomitant refolding and reoxidation experiment (at 0.5 M Gdn.HCl and using an optimal disulfide interchange catalytic system), the time constant for disulfide formation was in the range of 80--200 s and the fluorescence change revealed a lag phase analyzable in terms of rate-limiting reoxidation and refolding times consistent with those observed for the initially disulfide bonded species. Under similar conditions but a 4 M Gdn.HCl, reoxidation was more than two orders of magnitude slower, suggesting that reoxidation is directed by a refolding nucleation event.  相似文献   

17.
Jourdan M  Searle MS 《Biochemistry》2001,40(34):10317-10325
The thermodynamics of the native<-->A state and native<-->unfolded transitions for ubiquitin have been characterized in detail using the denaturants methanol and guanidinium chloride (Gdn.HCl) both separately and in combination. Gdn.HCl destabilizes the partially folded alcohol-induced A state such that the effects of alcoholic solvents on the native<-->unfolded transition can be investigated directly via a two-state model. The combined denaturing effects of methanol and Gdn.HCl appear to conform to a simple additive model. We show that ubiquitin folds and unfolds cooperatively in all cases, forming the same "native" state; however, the thermodynamics of the N<-->U transition change dramatically between alcoholic and Gdn.HCl solutions, with folding in aqueous methanol associated with large negative enthalpy and entropy terms at 298 K with a gradual falloff in DeltaC(p) at higher methanol concentrations, as previously reported for the N<-->A transition (Woolfson, D. N., Cooper, A., Harding, M. M., Williams, D. H., and Evans, P. A. (1993) J. Mol. Biol. 229, 502-511.). Both the N<-->U and the N<-->A transitions are enthalpy driven to a similar extent. We conclude that under these conditions van der Waals interactions in the packing of the nonpolar protein core, which is common to both the N<-->U and the N<-->A transitions, appear to drive folding in the absence of entropic effects associated with release of ordered solvent (hydrophobic effect). Solvent transfer studies of hydrocarbons into alcoholic solvents, with and without Gdn.HCl, are consistent with a large enthalpic driving force for burial of a nonpolar surface, with a linear dependence of protein stability (DeltaG(N)(<-->)(U)) on cosolvent concentration reflected in a similar linear dependence of hydrocarbon solubility. The data demonstrate that the hydrophobic effect is not a prerequisite for specific stabilization of the native state or the A state and that van der Waals packing of the nonpolar core appears to be the dominant factor in stabilization of the native state.  相似文献   

18.
J M Betton  M Desmadril  J M Yon 《Biochemistry》1989,28(13):5421-5428
The accessibility of peptide bonds to cleavage by Staphylococcus aureus V8 protease bound on a Sepharose matrix was used as a conformational probe in the study of the unfolding-folding transition of phosphoglycerate kinase induced by guanidine hydrochloride. It was shown that the protein is resistant to proteolysis below a denaturant concentration of 0.4 M. The transition curve, determined by susceptibility toward proteolysis, was similar to that obtained following the enzyme activity [Betton et al. (1984) Biochemistry 23, 6654-6661]. Proteolysis under conditions where the folding intermediates are more populated, i.e., 0.7 M Gdn.HCl, gave two major fragments of Mr 25K and 11K, respectively. The 25K polypeptide fragment was identified as the carboxy-terminal domain. Its conformation was similar to that of a folding intermediate trapped at a critical concentration of denaturant, and in this form, it was not able to bind nucleotide substrates [Mitraki et al. (1987) Eur. J. Biochem. 163, 29-34]. From the present data and those previously reported, we concluded that the intermediate detected on the folding pathway of phosphoglycerate kinase has a partially folded carboxy-terminal domain and an unfolded amino-terminal domain.  相似文献   

19.
Reduced bovine pancreatic trypsin inhibitor has a compact structure   总被引:4,自引:0,他引:4  
D Amir  E Haas 《Biochemistry》1988,27(25):8889-8893
The conformation of reduced bovine pancreatic trypsin inhibitor (R-BPTI) under reducing conditions was monitored by measurements of nonradiative excitation energy-transfer efficiencies (E) between a donor probe attached to the N-terminal Arg1 residue and an acceptor attached to one of the lysine residues (15, 26, 41, or 46) [Amir, D., & Haas, E. (1987) Biochemistry 26, 2162-2175]. High-excitation energy-transfer efficiencies that approach those found in the native state were obtained for the reduced labeled BPTI derivatives in 0.5 M guanidine hydrochloride (Gdn.HCl) and 4 mM DTT. Unlike the dependence expected for a random coil chain, E does not decrease as a function of the number of residues between the labeled sites. The efficiency of energy transfer between probes attached to residues 1 and 15 in the reduced state is higher than that found for the same pair of sites in the native state or reduced unfolded (in 6 M Gdn.HCl) state. This segment also shows high dynamic flexibility. These results indicate that the overall structure of reduced BPTI under folding (but still reducing) conditions shows a high population of conformers with interprobe distances similar to those of the native state. Reduced BPTI seems to be in a molten globule state characterized by a flexible, compact structure, which probably reorganizes into the native structure when the folding is allowed to proceed under oxidizing conditions.  相似文献   

20.
The optical properties of Pseudomonas cytochrome oxidase (ferrocytochrome-c:oxygen oxidoreductase, EC 1.9.3.2) were monitored as a function of guanidine hydrochloride (Gdn X HCl) concentration to probe for differential stabilization of its prosthetic groups, heme d1 and heme c. The protein fluorescence intensity increased with the Gdn X HCl concentration, revealing two transitions, a sharp one between 1.3 and 1.5 M Gdn X HCl, and a second less well defined extending from 2.5 to 4.5 M. Only the transition at the lower Gdn X HCl concentrations was present in titrations followed using the emission maxima. The spectral maximum for native Pseudomonas cytochrome oxidase was at approx. 335 nm and shifted to approx. 350 nm above 2 M Gdn X HCl. The heme d1 absorbance at 638 nm decreased with increasing [Gdn X HCl], giving a transition at 1.3-1.5 M, and no transition up to 4 M Gdn X HCl when the heme c was monitored at 525 nm. Along with the decrease at 638 nm, an absorption band appeared at 681 nm, suggesting heme d1 release into solution. Fluorescence titration of heme d1-depleted enzyme, prepared by gel filtration, showed a single transition similar to the transition occurring in the intact enzyme at high Gdn X HCl concentrations. Circular dichroism spectra revealed clearly distinguishable transitions for the heme d1 and heme c near 1.5 and 3.0 M Gdn X HCl, respectively. These results suggest that the two hemes are in regions of the protein with different stabilities which may represent distinct structural domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号