首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through exhaustive two-hybrid screens using a budding yeast genomic library, and starting with the splicing factor and DEAH-box RNA helicase Prp22p as bait, we identified yeast Prp45p and Prp46p. We show that as well as interacting in two-hybrid screens, Prp45p and Prp46p interact with each other in vitro. We demonstrate that Prp45p and Prp46p are spliceosome associated throughout the splicing process and both are essential for pre-mRNA splicing. Under nonsplicing conditions they also associate in coprecipitation assays with low levels of the U2, U5, and U6 snRNAs that may indicate their presence in endogenous activated spliceosomes or in a postsplicing snRNP complex.  相似文献   

2.
Differences observed between plant and animal pre-mRNA splicing may be the result of primary or secondary structure differences in small nuclear RNAs (snRNAs). A cDNA library of pea snRNAs was constructed from anti-trimethylguanosine (m3(2,2,7)G immunoprecipitated pea nuclear RNA. The cDNA library was screened using oligo-deoxyribonucleotide probes specific for the U1, U2, U4 and U5 snRNAs. cDNA clones representing U1, U2, U4 and U5 snRNAs expressed in seedling tissue have been isolated and sequenced. Comparison of the pea snRNA variants with other organisms suggest that functionally important primary sequences are conserved phylogenetically even though the overall sequences have diverged substantially. Structural variations in U1 snRNA occur in regions required for U1-specific protein binding. In light of this sequence analysis, it is clear that the dicot snRNA variants do not differ in sequences implicated in RNA:RNA interactions with pre-mRNA. Instead, sequence differences occur in regions implicated in the binding of small ribonucleoproteins (snRNPs) to snRNAs and may result in the formation of unique snRNP particles.  相似文献   

3.
We have previously shown that the yeast PRP19 protein is associated with the spliceosome during the splicing reaction by immunoprecipitation studies with anti-PRP19 antibody. We have extended such studies by using extracts depleted of specific splicing factors to investigate the step of the spliceosome assembly process that PRP19 is involved in. PRP19 was not associated with the splicing complexes formed in U2- or U6-depleted extracts but was associated with the splicing complex formed in heat-inactivated prp2 extracts. This finding indicates that PRP19 becomes associated with the splicing complexes after or concomitant with binding of the U6 small nuclear ribonucleoprotein particle (snRNP) to the precursor RNA and before formation of the functional spliceosome. We further analyzed whether PRP19 is an integral component of snRNPs. We have constructed a strain in which an epitope of nine amino acid residues recognized by a well-characterized monoclonal antibody, 12CA5, is linked to the carboxyl terminus of the wild-type PRP19 protein. Immunoprecipitation of the splicing extracts with anti-PRP19 antibody or precipitation of the extracts prepared from the epitope-tagged strain with the 12CA5 antibody did not precipitate significant amounts of snRNAs. Addition of micrococcal nuclease-treated extracts to the PRP19-depleted extract restored its splicing activity. These results indicate that PRP19 is not tightly associated with any of the snRNAs required for the splicing reaction. No non-snRNP protein factor has been demonstrated to participate in either step of the spliceosome assembly pathway that PRP19 might be involved in. Thus, PRP19 represents a novel splicing factor.  相似文献   

4.
M Cooper  L H Johnston    J D Beggs 《The EMBO journal》1995,14(9):2066-2075
The SDB23 gene of Saccharomyces cerevisiae was isolated in a search for high copy-number suppressors of mutations in a cell cycle gene, DBF2, SDB23 encodes a 21,276 Da protein with significant sequence similarity to characterized mammalian snRNP core proteins. Examination of multiple sequence alignments of snRNP core proteins with Sdb23p indicates that all of these proteins share a number of highly conserved residues, and identifies a novel motif for snRNP core proteins. Sdb23p is essential for cell viability and is required for nuclear pre-mRNA splicing both in vivo and in vitro. Extracts prepared from Sdb23p-depleted cells are unable to support splicing and have vastly reduced levels of U6 snRNA. The stability of U1, U2, U4 and U5 spliceosomal snRNAs is not affected by the loss of Sdb23p. Antibodies raised against Sdb23p strongly coimmunoprecipitate free U6 snRNA and U4/U6 base-paired snRNAs. These results establish that SDB23 encodes a novel U6 snRNA-associated protein that is essential for the stability of U6 snRNA. We therefore propose the more logical name USS1 (U-Six SnRNP) for this gene.  相似文献   

5.
The primary structure of the 200 kDa protein of purified HeLa U5 snRNPs (U5-200kD) was characterized by cloning and sequencing of its cDNA. In order to confirm that U5-200kD is distinct from U5-220kD we demonstrate by protein sequencing that the human U5-specific 220 kDa protein is homologous to the yeast U5-specific protein Prp8p. A 246 kDa protein (Snu246p) homologous to U5-200kD was identified in Saccharomyces cerevisiae. Both proteins contain two conserved domains characteristic of the DEXH-box protein family of putative RNA helicases and RNA-stimulated ATPases. Antibodies raised against fusion proteins produced from fragments of the cloned mammalian cDNA interact specifically with the HeLa U5-200kD protein on Western blots and co-immunoprecipitate U5 snRNA and to a lesser extent U4 and U6 snRNAs from HeLa snRNPs. Similarly, U4, U5 and U6 snRNAs can be co-immunoprecipitated from yeast splicing extracts containing an HA-tagged derivative of Snu246p with HA-tag specific antibodies. U5-200kD and Snu246p are thus the first putative RNA helicases shown to be intrinsic components of snRNPs. Disruption of the SNU246 gene in yeast is lethal and leads to a splicing defect in vivo, indicating that the protein is essential for splicing. Anti-U5-200kD antibodies specifically block the second step of mammalian splicing in vitro, demonstrating for the first time that a DEXH-box protein is involved in mammalian splicing. We propose that U5-200kD and Snu246p promote one or more conformational changes in the dynamic network of RNA-RNA interactions in the spliceosome.  相似文献   

6.
U12-dependent introns are spliced by the so-called minor spliceosome, requiring the U11, U12, and U4atac/U6atac snRNPs in addition to the U5 snRNP. We have recently identified U6-p110 (SART3) as a novel human recycling factor that is related to the yeast splicing factor Prp24. U6-p110 transiently associates with the U6 and U4/U6 snRNPs during the spliceosome cycle, regenerating functional U4/U6 snRNPs from singular U4 and U6 snRNPs. Here we investigated the involvement of U6-p110 in recycling of the U4atac/U6atac snRNP. In contrast to the major U6 and U4/U6 snRNPs, p110 is primarily associated with the U6atac snRNP but is almost undetectable in the U4atac/U6atac snRNP. Since p110 does not occur in U5 snRNA-containing complexes, it appears to be transiently associated with U6atac during the cycle of the minor spliceosome. The p110 binding site was mapped to U6 nucleotides 38 to 57 and U6atac nucleotides 10 to 30, which are highly conserved between these two functionally related snRNAs. With a U12-dependent in vitro splicing system, we demonstrate that p110 is required for recycling of the U4atac/U6atac snRNP.  相似文献   

7.
Molecular comparison of monocot and dicot U1 and U2 snRNAs   总被引:2,自引:0,他引:2  
To elucidate differences between the pre-mRNA splicing components in monocots and dicots, we have cloned and characterized several U1 and U2 snRNA sequence variants expressed in wheat seedling nuclei. Primer extension sequencing on wheat and pea snRNA populations has demonstrated that two 5'-terminal nucleotides found in most other U1 snRNAs are missing/modified in many plant U1 snRNAs. Comparison of the wheat U1 and U2 snRNA variants with their counterparts expressed in pea nuclei has defined regions of structural divergence between monocot and dicot U1 and U2 snRNAs. The U1 and U2 snRNA sequences involved in RNA:RNA interaction with pre-mRNAs are absolutely conserved. Significant differences occur between wheat and pea U1 snRNAs in stem I and II structures implicated in the binding of U1-specific proteins suggesting that the monocot and dicot U1-specific snRNP proteins differ in their binding specificities. Stem III structures, which are required in mammalian systems for splicing complex formation but not for U1-specific protein binding, differ more extensively than stems I, II, or IV. In U2 snRNAs, the sequence differences between these two species are primarily localized in stem III and in stem IV which has been implicated in snRNP protein binding. These differences suggest that monocot and dicot U1 and U2 snRNPs represent distinct entities that may have monocot- and dicot-specific snRNP protein variants associated with each snRNA.  相似文献   

8.
Roles of U4 and U6 snRNAs in the assembly of splicing complexes.   总被引:14,自引:3,他引:11       下载免费PDF全文
A series of U4 and U6 snRNA mutants was analysed in Xenopus oocytes to determine whether they block splicing complex assembly or splicing itself. All the U4 and U6 mutants found to be inactive in splicing complementation resulted in defects in assembly of either U4/U6 snRNP or of splicing complexes. No mutants were found to separate the entry of U5 and U6 snRNAs into splicing complexes and neither of these RNAs was able to associate with the pre-mRNA in the absence of U4. In the absence of U6 snRNA, however, U4 entered a complex containing pre-mRNA as well as the U1 and U2 snRNAs. U6 nucleotides whose mutation resulted in specific blockage of the second step of splicing in Saccharomyces cerevisiae are shown not to be essential for splicing in the oocyte assay. The results are discussed in terms of the roles of U4 and U6 in the assembly and catalytic steps of the splicing process.  相似文献   

9.
In Saccharomyces cerevisiae, Cwc21p is a protein of unknown function that is associated with the NineTeen Complex (NTC), a group of proteins involved in activating the spliceosome to promote the pre-mRNA splicing reaction. Here, we show that Cwc21p binds directly to two key splicing factors—namely, Prp8p and Snu114p—and becomes the first NTC-related protein known to dock directly to U5 snRNP proteins. Using a combination of proteomic techniques we show that the N-terminus of Prp8p contains an intramolecular fold that is a Snu114p and Cwc21p interacting domain (SCwid). Cwc21p also binds directly to the C-terminus of Snu114p. Complementary chemical cross-linking experiments reveal reciprocal protein footprints between the interacting Prp8 and Cwc21 proteins, identifying the conserved cwf21 domain in Cwc21p as a Prp8p binding site. Genetic and functional interactions between Cwc21p and Isy1p indicate that they have related functions at or prior to the first catalytic step of splicing, and suggest that Cwc21p functions at the catalytic center of the spliceosome, possibly in response to environmental or metabolic changes. We demonstrate that SRm300, the only SR-related protein known to be at the core of human catalytic spliceosomes, is a functional ortholog of Cwc21p, also interacting directly with Prp8p and Snu114p. Thus, the function of Cwc21p is likely conserved from yeast to humans.  相似文献   

10.
A critical assessment of the utility of protein-free splicing systems   总被引:2,自引:2,他引:0  
U2 and U6 snRNAs form part of the catalytic spliceosome and represent strong candidates for components of its active site. Over the past decade it has become clear that these snRNAs are capable of catalyzing several different chemical reactions, leading to the widespread conclusion that the spliceosome is a ribozyme. Here, we discuss the advances in both protein-free and fully spliceosomal systems that would be required to conclude that the reactions observed to be catalyzed by protein-free snRNAs are related to splicing and question the reliability of snRNA-only systems as tools for mechanistic splicing research.  相似文献   

11.
Functional reconstitution of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was performed using in vitro transcribed U1 snRNA. Hela cell nuclear extract was depleted of its constituent snRNPs by centrifugation at 100,000 X g. The supernatant was devoid of snRNAs and lacked cleavage activity in splicing reactions using in vitro transcribed beta-globin pre-mRNA as substrate. The resulting pellet which contained the snRNAs, retained 5' splice site cleavage activity in a similar splicing reaction. Supplementation of the inactive supernatant fraction with in vitro transcribed U1 snRNA, partially restored 5' splice site cleavage activity thereby demonstrating the specific requirement of U1 snRNP in the initial stage of pre-mRNA splicing.  相似文献   

12.
13.
S M Berget  B L Robberson 《Cell》1986,46(5):691-696
The requirement for individual U RNAs in splicing and polyadenylation was investigated using oligonucleotide-directed cleavage of snRNAs in in vitro processing extracts. Cleavage of U1, U2, or U4 RNA inhibited splicing but not polyadenylation of short precursor RNAs. Thus each snRNA and the snRNP in which it is assembled participates in the splicing reaction. Splicing activity was recovered when extracts containing cleaved U RNAs were mixed in pairwise combinations, indicating that U1, U2, and U4/U6 snRNPs independently interact with the assembling spliceosome. The involvement of multiple snRNPs in the splicing of simple precursor RNAs suggests that the spliceosome is a large complex assembly consisting of multiple snRNPs whose activity is dependent on the structural integrity of the individual U RNAs.  相似文献   

14.
Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc finger and RNA recognition motif (RRM). In yeast cells mutation of either the zinc finger or RRM destabilize Cwc2 and are lethal. Yeast cells depleted of Cwc2 accumulate pre-mRNA and display reduced levels of U1, U4, U5 and U6 snRNAs. Cwc2 depletion also reduces U4/U6 snRNA complex levels, as found with depletion of other NTC proteins, but without increase in free U4. Purified Cwc2 displays general RNA binding properties and can bind both snRNAs and pre-mRNA in vitro. A Cwc2 RRM fragment alone can bind RNA but with reduced efficiency. Under splicing conditions Cwc2 can associate with U2, U5 and U6 snRNAs, but can only be crosslinked directly to the U6 snRNA. Cwc2 associates with U6 both before and after the first step of splicing. We propose that Cwc2 links the NTC to the spliceosome during pre-mRNA splicing through the U6 snRNA.  相似文献   

15.
Myb-related cdc5p is required for G(2)/M progression in the yeast Schizosaccharomyces pombe. We report here that all detectable cdc5p is stably associated with a multiprotein 40S complex. Immunoaffinity purification has allowed the identification of 10 cwf (complexed with cdc5p) proteins. Two (cwf6p and cwf10p) are members of the U5 snRNP; one (cwf9p) is a core snRNP protein. cwf8p is the apparent ortholog of the Saccharomyces cerevisiae splicing factor Prp19p. cwf1(+) is allelic to the prp5(+) gene defined by the S. pombe splicing mutant, prp5-1, and there is a strong negative genetic interaction between cdc5-120 and prp5-1. Five cwfs have not been recognized previously as important for either pre-mRNA splicing or cell cycle control. Further characterization of cwf1p, cwf2p, cwf3p, and cwf4p demonstrates that they are encoded by essential genes, cosediment with cdc5p at 40S, and coimmunoprecipitate with cdc5p. We further show that cdc5p associates with the U2, U5, and U6 snRNAs and that cells lacking cdc5(+) function are defective in pre-mRNA splicing. These data raise the possibility that the cdc5p complex is an intermediate in the assembly or disassembly of an active S. pombe spliceosome.  相似文献   

16.
The organization of the major snRNP particles in mammalian cell nuclei has been analysed by in situ labelling using snRNA-specific antisense probes made of 2'-OMe RNA. U3 snRNA is exclusively detected in the nucleolus while all the spliceosomal snRNAs are found in the nucleoplasm outside of nucleoli. Surprisingly, U2, U4, U5 and U6 snRNAs are predominantly observed in discrete nucleoplasmic foci. U1 snRNA is also present in foci but in addition is detected widely distributed throughout the nucleoplasm. An anti-peptide antibody specific for the non-snRNP splicing factor U2AF reveals it to have a similar distribution to U1 snRNA. Co-localization studies using confocal fluorescence microscopy prove that U2AF is present in the snRNA-containing foci. Antibody staining also shows the foci to contain snRNP-specific proteins and m3G-cap structures. The presence of major components of the nuclear splicing apparatus in foci suggests that these structures may play a role in pre-mRNA processing.  相似文献   

17.
Through a genetic screen to search for factors that interact with Prp17/Cdc40p, a protein involved in both cell cycle progression and pre-mRNA splicing, we identify three novel factors, which we call Syf1p, Syf2p, and Syf3 (SYnthetic lethal with cdc Forty). Here we present evidence that all three proteins are spliceosome associated, that they associate weakly or transiently with U6 and U5 snRNAs, and that Syf1p and Syf3p (also known as Clf1p) are required for pre-mRNA splicing. In addition we show that depletion of Syf1p or Syf3p results in cell cycle arrest at the G2/M transition. Thus, like Prp17/Cdc40p, Syf1p and Syf3p are involved in two distinct cellular processes. We discuss the likelihood that Syf1p, Syf2p, and Syf3p are components of a protein complex that assembles into spliceosomes and also regulates cell cycle progression.  相似文献   

18.
19.
The U1 small nuclear (sn)RNA participates in splicing of pre-mRNAs by recognizing and binding to 5′ splice sites at exon/intron boundaries. U1 snRNAs associate with 5′ splice sites in the form of ribonucleoprotein particles (snRNPs) that are comprised of the U1 snRNA and 10 core components, including U1A, U1-70K, U1C and the ‘Smith antigen’, or Sm, heptamer. The U1 snRNA is highly conserved across a wide range of taxa; however, a number of reports have identified the presence of expressed U1-like snRNAs in multiple species, including humans. While numerous U1-like molecules have been shown to be expressed, it is unclear whether these variant snRNAs have the capacity to form snRNPs and participate in splicing. The purpose of the present study was to further characterize biochemically the ability of previously identified human U1-like variants to form snRNPs and bind to U1 snRNP proteins. A bioinformatics analysis provided support for the existence of multiple expressed variants. In vitro gel shift assays, competition assays, and immunoprecipitations (IPs) revealed that the variants formed high molecular weight assemblies to varying degrees and associated with core U1 snRNP proteins to a lesser extent than the canonical U1 snRNA. Together, these data suggest that the human U1 snRNA variants analyzed here are unable to efficiently bind U1 snRNP proteins. The current work provides additional biochemical insights into the ability of the variants to assemble into snRNPs.  相似文献   

20.
Antisense oligonucleotides made of 2'-OMe RNA are shown to bind specifically and efficiently to targeted sites on pre-mRNA substrates, allowing affinity selection of splicing complexes using streptavidin/biotin chromatography. The position of probe binding to the pre-mRNA influences which type of splicing complex can be selected. The accessibility of pre-mRNA sequences to antisense probes changes during the course of the splicing reaction. U1, U2, U4, U5 and U6 snRNAs are all detected in affinity-selected mammalian splicing complexes. However, antisense oligonucleotides targeted to snRNAs can block the binding of specific snRNPs to pre-mRNA. Quantitative affinity selection analyses show that only a small fraction of snRNPs in a HeLa nuclear splicing extract participate in spliceosome formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号