首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
人胚胎干细胞向神经上皮祖细胞的诱导分化   总被引:1,自引:0,他引:1  
人胚胎干细胞具有自我更新和多向分化潜能,是研究早期胚胎发育和细胞替代治疗的重要细胞来源.采用一种与小鼠成纤维细胞共培养的方法进行人胚胎干细胞的神经诱导,可产生高纯度的神经上皮祖细胞,其神经上皮特异性基因的表达有一定的时空性;诱导生成的神经上皮祖细胞具有增殖潜能并可分化为神经元和星型胶质细胞,是潜在的神经干细胞.人胚胎干细胞来源的神经上皮祖细胞为研究神经发育和神经诱导提供了新材料,也为神经系统疾病的细胞替代治疗提供了新的细胞来源.  相似文献   

2.
采用单层贴壁分化的方法在无血清条件下诱导同源饲养层培养的人胚胎干细胞定向分化,得到了高比例的神经前体细胞(97.5±0.83)%(P<0.05)。这些神经前体细胞具有分化为神经元、星形胶质细胞和少突胶质细胞的能力。在长期的传代培养中发现,随着培养时间的延长,nestin阳性的神经前体细胞比例下降,同时发育能力也发生了变化。在传代培养的早期,神经前体细胞发育为神经元的比例很高,几乎没有胶质细胞分化出来。随着培养时间的延长,胶质细胞的比例逐渐上升。这与体内神经系统的发育过程非常相似。进一步研究发现具有bHLH(basic helix-loop-helix)结构域的转录因子neurogenein2(Ngn2)和Olig2可能在这一变化中起重要作用。因此,人胚胎干细胞来源的神经前体细胞能够模拟体内神经发育的模式,为在体外研究人的神经发育和再生医学奠定了基础。  相似文献   

3.
胚胎干细胞具有分化成三胚层细胞的潜能。它已被视为治疗多种疾痛的一种新兴策略。在现阶段,通过不同的诱导途径可将胚胎干细胞诱导成为肝细胞:体外诱导、体内诱导以及体外和体内相结合诱导分化。然而从体内实验结果来看,其嵌合率及分化率不高,这是一个亟需解决的问题,否则就无法成功地将其应用于临床治疗。  相似文献   

4.
5.
6.
Researching the technology for in vitro differentiation of embryonic stem cells (ESCs) into neural lineages is very important in developmental biology, regenerative medicine, and cell therapy. Thus, studies on in vitro differentiation of ESCs into neural lineages by co-culture are expected to improve our understanding of this process. A co-culture system has long been used to study interactions between cell populations, improve culture efficiency, and establish synthetic interactions between populations. In this study, we investigated the effect of a co-culture of ESCs with neural stem cells (NSCs) in two-dimensional (2D) or three-dimensional (3D) culture conditions. Furthermore, we examined the effect of an NSC-derived conditioned medium (CM) on ESC differentiation. OG2-ESCs lost the specific morphology of colonies and Oct4-GFP when co-cultured with NSC. Additionally, real-time PCR analysis showed that ESCs co-cultured with NSCs expressed higher levels of ectoderm markers Pax6 and Sox1 under both co-culture conditions. However, the differentiation efficiency of CM was lower than that of the non-conditioned medium. Collectively, our results show that co-culture with NSCs promotes the differentiation of ESCs into the ectoderm.  相似文献   

7.
8.
Embryonic Stem Cells (ESCs) represent an invaluable tool for the study of early mammalian development, for regenerative medicine and for drug discovery. To fulfill these promises, efficient and easy protocols to differentiate ESCs have to be developed. Most of these protocols results in low efficiency of neural induction and/or requires extended in vitro culture. Here we describe in detail an easy and efficient method to differentiate ESCs into neurons, that can be used to identify molecules required for proper neuronal differentiation. Moreover, we present a modification of this method that allows to clearly evaluate the ability of some molecules to favor neuron formation in vitro. These methods can represent an efficient platform for studying the molecular mechanisms underlying early events of neural induction and differentiation in ESCs, as well as for testing molecule efficacy in the pharmaceutical testing.  相似文献   

9.
We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported.  相似文献   

10.
弄清胚胎肝脏发育的分化调节机制,对指导干细胞在肝再生中的应用以及研究肝分化相关疾病分子机制具有重要意义.胚胎干细胞的全能性使得体外建立肝向分化模型成为可能,采用单层贴壁培养方式,分阶段加入成纤维细胞生长因子(FGF)、肝细胞生长因子(HGF)、制瘤素(OSM)等因子,诱导小鼠胚胎干细胞D3(mESC-D3)的肝向分化.分化细胞在光镜和电镜下呈现肝样细胞形态,RT-PCR、细胞免疫荧光检测以及PAS染色分析表明,这些细胞具有肝细胞特征性的基因表达和生化功能.采用干细胞分化相关基因芯片比较早期肝定向分化前后的基因表达差异,结果显示,48个差异表达基因中(大于2倍),20个上调、28个下调.进一步的生物信息学分析发现,它们集中体现在细胞外基质、细胞连接、FGF、BMP分子及Notch、Wnt信号通路上,提示这些改变可能与胚胎早期的肝向分化密切相关.  相似文献   

11.
小鼠胚胎干细胞在单层粘附培养中向神经细胞的分化   总被引:4,自引:0,他引:4  
目的 :探讨小鼠胚胎干 (ES)细胞在无血清培养基中以单层粘附培养方式向神经分化的方法。方法 :比较ES细胞在不同培养基中的生长情况 ,分析ES细胞在不同时间分化形成神经细胞的比例。结果 :( 1 )DMEM F1 2和Neurobasal B2 7的 1∶1混合培养基最适合ES的生长。 ( 2 )单层粘附的ES细胞表达神经细胞粘附分子 (NCAM)的比例随时间增长而增加 ,而nestin的表达先增加后下降。 ( 3)ES细胞可在两周分化为神经胶质及神经元 ,形成神经网络。结论 :小鼠ES细胞可在单层粘附培养中获得向神经的高效分化。  相似文献   

12.
Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR) were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA), a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities.  相似文献   

13.
胚胎干细胞在不同的诱导条件下具有多向分化的潜能,多种胞内外信号途径参与其分化过程的调控。现就胚胎干细胞向血管内皮细胞分化的诱导条件及分子机制做一综述,并阐明不同阶段的内皮前体细胞所表达的不同分子标志,同时提出胚胎干细胞在再生医学中的应用前景。  相似文献   

14.
15.
猕猴胚胎干细胞的诱导分化和凋亡   总被引:1,自引:0,他引:1  
采用单层培养法研究维生素A酸(RA)、神经生长因子(NGF)、上皮生长因子(EGF)和碱性成纤维生长因子(bFGF)对猕猴胚胎干细胞系R366.4的诱导分化和凋亡的作用。结果表明:①不添加任何生长因子的条件下,细胞分化不定向,各种细胞所占的比例表现出明显的随机性;②添加单一生长因子能促进细胞的分化进程,并使某一类或某几类的分化细胞比例上升,RA和NGF均能促进神经样细胞的形成,EGF促进内皮样细胞的形成,bFGF提高成纤维样细胞的比例;③在分化的过程中伴有细胞早期和晚期凋亡的发生,RA和NGF可增加细胞凋亡的数量。这种由生长因子诱导的动物胚胎干细胞的分化可能存在种间差异。  相似文献   

16.
动物胚胎干细胞诱导分化的研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞 (ES细胞 )是从动物早期胚胎的内细胞团或原始生殖细胞分离出来的具有发育全能性的一种未分化的无限增殖细胞系 ,ES细胞能体外诱导分化为神经细胞、肌肉细胞、成纤维细胞等各种细胞。综述了动物的ES细胞的分化诱导机理及目前体外诱导分化的研究现状  相似文献   

17.
The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knock down that might affect the proper silencing of these genes during differentiation.  相似文献   

18.

Background

Bone Morphogenetic Protein (BMP) signaling pathways are involved in differentiation of stem cells into diverse cell types, and thus BMPs can be used as main guidance molecules for in vitro differentiation of human stem cells.

Methodology/Principal Findings

We have analyzed the ability for inducing differentiation of the heterodimer BMP-2/BMP-6 (BMP-2/6) compared to the homodimers BMP-2 or BMP-6, using human embryonic stem (hES) cells H9 as model system. When incubated in a medium with high concentration of basic fibroblastic growth factor (FGF2), 100 ng/ml of human recombinant BMPs induced morphological changes and differentiation of hES cells in 24 to 48 hours. After 5 days, expression of differentiation markers was induced and quantified by quantitative PCR (qPCR) and flow cytometry. BMP-2/6 exhibited stronger activity for the induction of the expression of trophectodermal (CDX2) and endodermal (SOX17, GATA4, AFP) markers than BMP-2 or BMP-6 homodimers. BMP-2/6 also induced the expression of BMPR2 gene more effectively than BMP-2 or BMP-6 when used at the same concentration and time. Moreover, the percentage of cells expressing the surface endodermal marker CXCR4 was also increased for the heterodimer when compared to both homodimers. BMP-2/6 was a more potent activator of Smad-dependent (SMAD1/5) and Smad-independent signaling (mitogen-activated protein kinases ERK and p38) than BMP-2 and BMP-6, and the activation of these pathways might play a role in its increased potency for inducing hES cell differentiation.

Conclusions/Significance

Therefore, we conclude that BMP-2/6 is more potent than BMP-2 or BMP-6 for inducing differentiation of hES cells, and it can be used as a more powerful substitute of these BMPs in in vitro differentiation guidance.  相似文献   

19.
Human embryonic stem cells (hESCs) are pluripotent and capable of undergoing multilineage differentiation into highly specialized cells including pancreatic islet cells. Thus, they represent a novel alternative source for targeted therapies and regenerative medicine for diabetes. Significant progress has been made in differentiating hESCs toward pancreatic lineages. One approach is based on the similarities of pancreatic β cell and neuroepithelial development. Nestin-positive cells are selected as pancreatic β cell precursors and further differentiated to secrete insulin. The other approach is based on our knowledge of developmental biology in which the differentiation protocol sequentially reproduces the individual steps that are known in normal β cell ontogenesis during fetal pancreatic development. In the present study, the hESC cell line PKU1.1 was induced to differentiate into insulin-producing cells (IPCs) using both protocols. The differentiation process was dynamically investigated and the similarities and differences between both strategies were explored. Our results show that IPCs can be successfully induced with both differentiation strategies. The resulting IPCs from both protocols shared many similar features with pancreatic islet cells, but not mature, functional β cells. However, these differently-derived IPC cell types displayed specific morphologies and different expression levels of pancreatic islet development-related markers. These data not only broaden our outlook on hESC differentiation into IPCs, but also extend the full potential of these processes for regenerative medicine in diabetes.  相似文献   

20.
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
Highlights
  • •Integrative multi-omics study characterizing the differentiation from hESCs into hMSCs.
  • •Set of high confidence genes important in hESC to hMSC differentiation defined.
  • •Two distinct expression waves of HOX genes and a AGO2-to-AGO3 switch in gene silencing identified.
  • •AHNAK hypothesized as a defining factor in MSC biology.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号