首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the ectomycorrhizal (ECM) fungal community across a bog-forest ecotone in southeastern Alaska. The bog and edge were both characterized by poorly drained Histosols and a continuous layer of Sphagnum species, ericaceous shrubs, Carex species, and shore pine [Pinus contorta Dougl. ex Loud. var. contorta]. The forest had better-drained Inceptisols and Spodosols, a tree community comprised of western hemlock [Tsuga heterophylla (Raf.) Sarg.], yellow cedar (Thuja plicata Donn ex D. Don.), Sitka spruce [Picea sitchensis (Bong.) Carr.] and shore pine, and an understorey of ericaceous shrubs and herbs. ECM root tip density (tips cm–3 soil) was significantly greater in the forest than the edge or bog and ECM colonization was significantly different in all three plant communities. The below ground ECM fungal taxa were analyzed using molecular techniques (PCR-RFLP and DNA sequencing). Three ECM fungal taxa, Suillus tomentosus (Kauffman) Singer, Cenococcum geophilum Fr.:Fr, and a Russula species, differed in relative frequency, yet were among the four most frequent in all three plant communities. Although differences in ECM fungal richness were observed across plant communities, unequal sampling of ECM roots due to root density and colonization differences confounded richness comparisons. Using resampling procedures for creating taxon-accumulation curves as a function of sampled ECM roots revealed similarities in cumulative ECM fungal taxa richness across the ecotone.  相似文献   

2.
Questions: What is the current distribution of pine and oak species along environmental gradients in southern Spain? Do pine and oak regeneration niches differ from the environmental niches of adults? Is oak species regeneration favoured under the canopy of pine forests? Location: Forest areas of Andalusia (~87 600 km2, southern Spain). Methods: We compiled extensive forest inventory data to explore differences in abundance (basal area, m2 ha?1) patterns of adults (dbh >7.4 cm) and regeneration (dbh ≤7.4 cm) of five pine and five oak species. Canonical correspondence analysis (CCA) and generalized linear models were applied to explore species–environment relationships along climatic, edaphic, topographic and fire‐frequency gradients. Results: Both pines and oaks segregated along complex environmental gradients, with pines generally dominating in more severe (colder and drier) environments, while oaks dominated in milder, wetter winter areas. In 40‐55% of mature pine stands there was a lack of regeneration in the understorey, while in two oak species (Q. suber and Q. canariensis) 70% of stands did not show regeneration. Pine recruits were found at a higher frequency and abundance under the canopy of their congeners, whereas some oaks (Q. ilex) had greater regeneration under mixed pine–oak canopies. Conclusions: Climatic limitations and soil properties partly explained the regional distribution of pines and oaks. We found evidence for an upward shift of Q. ilex recruits towards areas with colder conditions in pine forests, which could be explained by a possible facilitative effect of the pine canopy on seedling establishment.  相似文献   

3.
In this paper, we report the effect of Scots pine genotypes on ectomycorrhizal (ECM) community and growth, survival, and foliar nutrient composition of 2-year-old seedlings grown in forest bare-root nursery conditions in Lithuania. The Scots pine seeds originated from five stands from Latvia (P1), Lithuania (P2 and P3), Belarus (P4), and Poland (P5). Based on molecular identification, seven ECM fungal taxa were identified: Suillus luteus and Suillus variegatus (within the Suilloid type), Wilcoxina mikolae, Tuber sp., Thelephora terrestris, Cenococcum geophilum, and Russuloid type. The fungal species richness varied between five and seven morphotypes, depending on seed origin. The average species richness and relative abundance of most ECM morphotypes differed significantly depending on pine origin. The most essential finding of our study is the shift in dominance from an ascomycetous fungus like W. mikolae in P2 and P4 seedlings to basidiomycetous Suilloid species like S. luteus and S. variegatus in P1 and P5 seedlings. Significant differences between Scots pine origin were also found in seedling height, root dry weight, survival, and concentration of C, K, Ca, and Mg in the needles. The Spearman rank correlation coefficient revealed that survival and nutritional status of pine seedlings were positively correlated with abundance of Suilloid mycorrhizas and negatively linked with W. mikolae abundance. However, stepwise multiple regression analysis showed that only survival and magnesium content in pine needles were significantly correlated with abundance of ECM fungi, and Suilloid mycorrhizas were a main significant predictor. Our results may have implications for understanding the physiological and genetic relationship between the host tree and fungi and should be considered in management decisions in forestry and ECM fungus inoculation programs.  相似文献   

4.
Ding Q  Liang Y  Legendre P  He XH  Pei KQ  Du XJ  Ma KP 《Mycorrhiza》2011,21(8):669-680
As the main source of inocula, ectomycorrhizal (ECM) fungal propagules are critical for root colonization and seedling survival in deforested areas. It is essential to know factors that may affect the diversity and composition of ECM fungal community on roots of seedlings planted in deforest areas during reforestation. We quantitatively evaluated the effect of host plant and soil origin on ECM fungal propagule community structure established on roots of Castanopsis fargesii, Lithocarpus harlandii, Pinus armandii, and Pinus massoniana growing in soils from local natural forests and from sites deforested by clear-cut logging in the 1950s and 1960s. ECM root tips were sampled in April, July, and October of 2006, and ECM fungal communities were determined using ECM root morphotyping, internal transcribed spacer (ITS)-RFLP, and ITS sequencing. A total of 36 ECM fungal species were observed in our study, and species richness varied with host species and soil origin. Decreased colonization rates were found in all host species except for L. harlandii, and reduced species richness was found in all host species except for P. armandii in soil from the deforested site, which implied the great changes in ECM fungal community composition. Our results showed that 33.3% variance in ECM fungal community composition could be explained by host plant species and 4.6% by soil origin. Results of indicator species analysis demonstrated that 14 out of 19 common ECM fungal species showed significant preference to host plant species, suggesting that the host preference of ECM fungi was one of the most important mechanisms in structuring ECM fungal community. Accordingly, the host plant species should be taken into account in the reforestation of deforested areas due to the strong and commonly existed host preference of ECM fungi.  相似文献   

5.
Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing‐season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time‐points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing‐season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter‐active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between‐year variation. Our study indicates that addressing seasonal changes requires replication over several years.  相似文献   

6.
In this study we examined the role of the nitrogen-fixing tree, Robinia pseudoacacia (black locust), in ectomycorrhizal (ECM) formation and ECM community of Pinus thunbergii (Japanese black pine) seedlings. Two 200 m(2) experimental plots were established at the border between a Japanese black pine- and a black locust-dominated area in a coastal forest. The ECM fungal community of pine seedlings was examined by PCR-RFLP and sequence analysis. We analyzed the relationship between ECM formation, ECM community, growth, and nutrient status of pine seedlings and environmental conditions using the Mantel test and structural equation model. Percentages of ECM root tips, the number of ECM fungal species and ECM diversity on pine seedlings decreased in the black locust-dominated area. Cenococcum geophilum and Russula spp. were dominant in the Japanese black pine-dominated area, whereas Tomentella spp. were dominant in the black locust-dominated area. Nitrogen (N) concentration in soils or pine seedlings strongly influenced the percentage of ECM root tips, the number of ECM fungal species and ECM fungal similarity. These results imply the long-term eutrophication caused by N-fixing trees can change ECM formation and ECM community structure.  相似文献   

7.
From 1913 to 1980, two zinc smelters in Palmerton, Pennsylvania, emitted large quantities of atmospheric pollutants nearly eliminating forests along a ridge above the town. In 2008, a remediation treatment was applied to the land above one of the smelters that included the planting of several locally adapted plant species. It also included mineral fertilization and mycorrhizal inoculation. One of the species, the Pitch pine (Pinus rigida, Mill.), is a native tree that is both tolerant of metalliferous soils and obligatorily ectomycorrhizal. This report summarizes the results of two observational studies conducted 5 years after the remediation treatment. The first study's objective was to compare ectomycorrhizal communities on treated Pitch pine saplings, with communities on naturally regenerating saplings in an adjacent non-remediated area. The second study's objective was to determine if the composition of the fungal communities on root tips of naturally regenerating Pitch pine saplings differed with distance from the smelters. Fungal community compositions were determined using internal transcribed spacer rRNA sequences. Comparisons of sequences from the remediated and non-remediated sites revealed that communities at the remediated sites had lower taxonomic diversity and were dominated by members of a genus in the remediation inoculant. The results of the smelter-proximity study indicated that although fungal diversity did not differ markedly with distance from the smelters, the relative abundances of some taxa were greater on saplings growing directly above the smelters, where the soils contained highest concentrations of zinc and cadmium.  相似文献   

8.
Abstract. Two extensive forest vegetation survey datasets are explored, using ordination and classification, for evidence of in situ regeneration by Pinus strobus (Eastern white pine) and P. resinosa (Red pine). Ordination of tree species contributions to total basal area in 320 upland northern hardwood- conifer stands produced distinct stand groups for P.banksiana, P. resinosa, P. strobus and mesic hardwoods in an ascending sequence along the first axis. Quercus rubra (red oak), Q. alba (white oak) and tolerant conifer groups formed segregates from the hardwood complex along the second axis. P. strobus mixes with all other forest types, but P. resinosa is restricted to its own group. Seedlings and trees of P. strobus are more abundant than saplings, which are restricted to the pine and oak forests. Therefore, seed production, dispersal and seedling establishment seem to be less of a barrier to in situ regeneration by P. strobus than subsequent survival and growth. Canonical correspondence analysis of 170 pine-dominated stands from the Canadian Shield of Ontario, in which tree species variables are segmented into height-class pseudo- species, yielded no linear relationship between environmental features or stand structure and seedling densities of P. strobus. However, total tree basal area appears to impose an upper limit to seedling density on the forest floor. Strong correlations emerged between pine seedling density and understorey vegetation. Stand classification of the understorey vegetation, using constrained indicator species analysis, yielded distinct high and low seedling groups. Low pine seedling density was associated with abundant broadleaved shrubs, herbs and seedlings as well as feathermosses and tolerant conifers. High seedling density could not be ascribed to the presence of seedbed taxa, such as Polytrichum, but is ascribed to the absence of competition and other forms of inhibition in the understorey vegetation and down through the canopy profile. In situ regeneration of P. strobus does, therefore, occur but conditions over the forest landscape are largely restrictive.  相似文献   

9.
Aphyllophoraceous fungi are expected to reflect changes in the environmental conditions caused by forest use. To reveal the effects of forest uses on the fungal community structure, we performed a 3‐month survey of aphyllophoraceous species in five forest types (undisturbed primary forest, isolated patches of primary forest, old and young fallow forest, and rubber plantations) in Sarawak, Malaysia in 2005. We used a canonical correspondence analysis (CCA) to reveal the relationships between fungal community composition and the environmental variables (canopy openness, soil water potential, amount and composition of coarse woody debris, litter mass, basal area, plant species composition). A total of 155 samples from 67 species were collected during the study period. The fungal species density represented by the number of species in a transect differed significantly among forest types. The fungal species density increased significantly with increasing number of pieces of coarse woody debris (CWD), but decreased significantly with increasing the scores of second axis of principal component analysis (PCA) for plant species composition. In the CCA ordination, automatic forward selection revealed that only the number of pieces of CWD significantly affected the fungal species composition. The occurrences of Flabellophora licmophora, Coriolopsis retropicta, Microporus vernicipes, and Amauroderma subrugosum were positively correlated with the number of pieces of CWD. Our study clearly demonstrated that forest use negatively affected aphyllophoraceous fungal diversity and suggest that the quantity of CWD would be an important determinant of fungal diversity and composition.  相似文献   

10.
Phylogenetic analysis of ITS sequences of members of the Craterellus cornucopioides complex (Black Trumpet mushrooms) supports the taxonomic separation of Craterellus fallax apart from C. cornucopioides, with which it has been synonymized in the past. Examination of Pinus virginiana ectomycorrhizal (ECM) root tips and sequence comparison with other insufficiently identified environmental sequences from roots of Tsuga, Quercus, and possibly Castanea supports a broad host range in North America for the ECM symbiont C. fallax. This is the first molecular confirmation of an ECM symbiont with P. virginiana, which associates with a wide diversity of ECM fungi, and the first report of a Cantharellaceae symbiont with this tree, an eastern North American two-needled pine. Three unique species in the C. cornucopioides complex are recovered based on phylogenetic analysis: C. fallax, C. cornucopioides, and an unidentified Craterellus species similar to C. fallax but smaller in stature with smaller spores.  相似文献   

11.
Ectomycorrhizal (ECM) fungi, in particular their spores and other resistant propagules, play an important role in secondary succession processes that facilitate regeneration after disturbance events. In this study, the effects of high and low wildfire frequencies (respectively short and long fire return intervals) on the resistant propagules communities (RPCs) of a Mediterranean open pine forest were compared. Soil samples were collected in four mountain sites with different fire return intervals and used to test ectomycorrhiza development in two hosts, Pinus pinaster and Quercus suber. RPCs were characterized by direct sequencing of fungal internal transcribed spacer (ITS) regions from individual ECM root tips. Eighteen ECM species were detected in the bioassay. The most frequently found fungi were Cenococcum geophilum, Inocybe jacobi, Thelephora terrestris, Tomentella ellisii on both hosts and Rhizopogon luteolus and R. roseolus on maritime pine. A short fire return interval reduced the species richness of the ECM community found on Q. suber, promoted species like R. roseolus and reduced the abundance of other species (e.g. R. luteolus). The abundance of I. jacobi was positively affected by long fire return interval, but decreased significantly with recurrent fires. These results indicate that changes in fire frequency can alter the structure, composition and diversity of ECM communities, which could compromise the resilience of the ecosystem in highly disturbed areas.  相似文献   

12.
We investigated the ectomycorrhizal (ECM) fungal colonization status of Pinus thunbergii mature trees and regenerating seedlings varying in age in coastal pine forests on the east coast of Korea. We established one 20 × 20-m plot at each of two study sites at P. thunbergii coastal forests in Samcheok. Fifty soil blocks (5 × 5 × 15 cm) were sampled at regular intervals, and ten P. thunbergii seedlings of age 0, 1–3, 3–5, and 5–10 years were sampled in each study plot. In total of 27 ECM fungal taxa, Cenococcum geophilum was dominant, followed by Russula sp., Sebacina sp., and unidentified Cortinuris sp. in mature trees. In 0-year-old seedlings, some fungal species such as Sebacina sp., C. geophilum, and unidentified Cortinarius sp. were dominant whereas only C. geophilum was dominant after 1 year, and there were no apparent succession patterns in ECM fungal compositions beyond a host age of 1 year. Most ECM fungal taxa that had colonized seedlings of each age class were also observed in roots of mature trees in each site. These taxa accounted for 86.7–100% and 96.4–98.4% of ECM abundance in seedlings and mature trees, respectively. The results indicate that the species composition of ECM fungal taxa colonizing seedlings of different age in forests is similar to that of surrounding mature trees. Our results also showed that C. geophilum is a common and dominant ECM fungus in P. thunbergii coastal forests and might play a significant role in their regeneration.  相似文献   

13.
We analysed the ectomycorrhizal (ECM) fungal diversity in a Mediterranean old-growth Quercus ilex forest stand from Corsica (France), where Arbutus unedo was the only other ECM host. On a 6400 m2 stand, we investigated whether oak age and host species shaped below-ground ECM diversity. Ectomycorrhizas were collected under Q. ilex individuals of various ages (1 yr seedlings; 3-10 yr saplings; old trees) and A. unedo. They were typed by ITS-RFLP analysis and identified by match to RFLP patterns of fruitbodies, or by sequencing. A diversity of 140 taxa was found among 558 ectomycorrhizas, with many rare taxa. Cenococcum geophilum dominated (35% of ECMs), as well as Russulaceae, Cortinariaceae and Thelephoraceae. Fungal species richness was comparable above and below ground, but the two levels exhibited < 20% overlap in fungal species composition. Quercus ilex age did not strongly shape ECM diversity. The two ECM hosts, A. unedo and Q. ilex, tended to share few ECM species (< 15% of the ECM diversity). Implications for oak forest dynamics are discussed.  相似文献   

14.
Ectomycorrhizal (ECM) communities of mature trees and regenerating seedlings of a non-native tree species Pinus mugo grown in a harsh environment of the coastal region of the Curonian Spit National Park in Lithuania were assessed. We established three study sites (S1, S2, and S3) that were separated from each other by 15 km. The ECM species richness was rather low in particular for mature, 100-year-old trees: 12 ectomycorrhizal taxa were identified by molecular analysis from 11 distinguished morphotypes. All 12 taxa were present on seedlings and on mature trees, with between 8–11 and 9–11 taxa present on seedlings and mature trees, respectively. Cenococcum geophilum dominated all ECM communities, but the relative abundance of C. geophilum mycorrhizas was nearly two times higher on seedlings than on mature trees. Mycorrhizal associations formed by Wilcoxina sp., Lactarius rufus, and Russula paludosa were also abundant. Several fungal taxa were only occasionally detected, including Cortinarius sp., Cortinarius obtusus, Cortinarius croceus, and Meliniomyces sp. Shannon’s diversity indices for the ECM assemblages of P. mugo ranged from 0.98 to 1.09 for seedling and from 1.05 to 1.31 for mature trees. According to analysis of similarity, the mycorrhizal communities were similar between the sites (R = 0.085; P = 0.06) and only slightly separated between seedlings and mature trees (R = 0.24; P < 0.0001). An incidental fruiting body survey that was conducted weakly reflected the below-ground assessment of the ECM fungal community and once again showed that ECM and fruiting body studies commonly supply different partial accounts of the true ECM fungal diversity. Our results show that P. mugo has moved into quite distinct habitats and is able to adapt a suite of ECM symbionts that sufficiently support growth and development of this tree and allow for natural seedling regeneration.  相似文献   

15.
Bryophytes comprise one of the richest microfungal microhabitats in the Antarctic environment. The maritime Antarctic is very vulnerable to rapid environmental change caused by global warming. The aim of this study was to investigate the importance of bryophytes as a microhabitat for fungal species in the maritime Antarctic by surveying endophytic fungal diversity from several bryophytes including Andreaea sp., Barbilophozia hatcheri, Chorisodontium aciphyllum, Polytrichum alpinum, Polytrichum strictum, Sanionia uncinata, and Warnstorfia sarmentosa. We collected 13 bryophyte samples at four localities on Barton Peninsula, King George Island. In total, 31 endophytic fungi morphotypes were isolated from bryophyte tissues by a thorough surface sterilization method. Using internal transcribed spacer sequence analysis, 16 endophytic fungal strains belonging to Ascomycota (12), Basidiomycota (1), Oomycota (1), and Zygomycota (2) phyla were obtained. Our results suggest the presence of a diverse range of fungal species even in a very limited area, and those bryophytes play an important role in conserving fungal diversity in this harsh environment. Growth rate measurements at a wide range of temperatures confirmed that most of the fungal strains were both mesophilic and psychrotolerant. This is the first report of endophytic fungi in Antarctic moss tissue by fluorescence in situ hybridization.  相似文献   

16.
Obase K  Tamai Y  Yajima T  Miyamoto T 《Mycorrhiza》2007,17(3):209-215
We investigated the association between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi and pioneer woody plant species in areas devastated by the eruption of Mt. Usu, Japan, in 2000. We observed eight woody plant species at the research site, most of which were associated with ECM and/or AM fungi. In particular, dominant woody plant species Populus maximowiczii, Salix hultenii var. angustifolia and Salix sachalinensis were consistently associated with ECM fungi and erratically associated with AM fungi. We found one to six morphotypes in the roots of each ECM host and, on average, two in the roots of each seedling, indicating low ECM fungal diversity. ECM colonization ranged from 17 to 42% of root tips. Using morphotyping and molecular analyses, 15 ECM fungi were identified. ECM fungi differed greatly between hosts. However, Laccaria amethystea, Hebeloma mesophaeum, Thelephora terrestris and other Thelephoraceae had high relative colonization, constituting the majority of the ECM colonization in the roots of each plant species. These ECM fungi may be important for the establishment of pioneer woody plant species and further revegetation at Mt. Usu volcano.  相似文献   

17.
In this study, we present the detailed molecular investigation of the ectomycorrhizal (ECM) community of Quercus petraea and Quercus robur seedlings grown in bare-root forest nurseries. In all tested oak samples, mycorrhizal colonization was nearly 100%. Morphological observation and molecular investigations (sequencing of fungal ITS rDNA) revealed a total of 23 mycorrhizal taxa. The most frequent and abundant fungal taxa were Hebeloma sacchariolens, Tuber sp., and Peziza sp.; from the detected fungal taxa, 20 were noted for Q. petraea and 23 for Q. robur. Depending on the nursery, the species richness of identified ECM fungal taxa for both oak species ranged from six to 11 taxa. The mean species richness for all nurseries was 5.36 and 5.82 taxa per Q. petraea and Q. robur sample, respectively. According to the analysis of similarity, ECM fungal communities were similar for Q. petraea and Q. robur (R = 0.019; p = 0.151). On the other hand, detected fungal communities were significantly different between nurseries (R = 0.927; p < 0.0001). Using the Spearman rank correlation, it was determined that the ectomycorrhizal diversity (in terms of richness, the Shannon diversity, evenness, and Simpson dominance indices) is significantly related to the soil parameters of each nursery. We conclude that individual nursery may be considered as separate ecological niches that strongly discriminate diversity of ECM fungi.  相似文献   

18.
Browsing of tree saplings by deer hampers forest regeneration in mixed forests across Europe and North America. It is well known that tree species are differentially affected by deer browsing, but little is known about how different facets of diversity, such as species richness, identity, and composition, affect browsing intensity at different spatial scales. Using forest inventory data from the Hainich National Park, a mixed deciduous forest in central Germany, we applied a hierarchical approach to model the browsing probability of patches (regional scale) as well as the species‐specific proportion of saplings browsed within patches (patch scale). We found that, at the regional scale, the probability that a patch was browsed increased with certain species composition, namely with low abundance of European beech (Fagus sylvatica L.) and high abundance of European ash (Fraxinus excelsior L.), whereas at the patch scale, the proportion of saplings browsed per species was mainly determined by the species’ identity, providing a “preference ranking” of the 11 tree species under study. Interestingly, at the regional scale, species‐rich patches were more likely to be browsed; however, at the patch scale, species‐rich patches showed a lower proportion of saplings per species browsed. Presumably, diverse patches attract deer, but satisfy nutritional needs faster, such that fewer saplings need to be browsed. Some forest stand parameters, such as more open canopies, increased the browsing intensity at either scale. By showing the effects that various facets of diversity, as well as environmental parameters, exerted on browsing intensity at the regional as well as patch scale, our study advances the understanding of mammalian herbivore–plant interactions across scales. Our results also indicate which regeneration patches and species are (least) prone to browsing and show the importance of different facets of diversity for the prediction and management of browsing intensity and regeneration dynamics.  相似文献   

19.
Ectomycorrhizal (ECM) fungi play major ecological roles in temperate and tropical ecosystems. Although the richness of ECM fungal communities and the factors controlling their structure have been documented at local spatial scales, how they vary at larger spatial scales remains unclear. In this issue of Molecular Ecology, Tedersoo et al. (2012) present the results of a meta‐analysis of ECM fungal community structure that sheds important new light on global‐scale patterns. Using data from 69 study systems and 6021 fungal species, the researchers found that ECM fungal richness does not fit the classic latitudinal diversity gradient in which species richness peaks at lower latitudes. Instead, richness of ECM fungal communities has a unimodal relationship with latitude that peaks in temperate zones. Intriguingly, this conclusion suggests the mechanisms driving ECM fungal community richness may differ from those of many other organisms, including their plant hosts. Future research will be key to determine the robustness of this pattern and to examine the processes that generate and maintain global‐scale gradients of ECM fungal richness.  相似文献   

20.
Rantis  Polly-Anne  Johnson  James E. 《Plant Ecology》2002,159(1):103-115
Canopygaps are important in establishing a pool of natural regeneration in manytemperate forest ecosystems. Information on the role of gaps in loblolly pine(Pinus taeda L.) and pine-hardwood foreststands in the southeastern Coastal Plain of the United States is lacking.Accordingly, 12 small canopy gaps in mature pine and pine-hardwood standsin Petersburg National Battlefield, Virginia, were studied. Loblolly pineregeneration was significantly more abundant in canopy gaps as compared to theadjacent forest in both forest cover types. In four stands dominated by loblollypine, there were 750 saplings/ha in the gaps compared to only 125saplings/ha in the adjacent forest. Pine saplings dominated the regenerationspectrum in the gaps in the pine stands, while red maple (Acerrubrum L.) was more important in the adjacent forest. In fourpine-hardwood stands, regeneration in both the gaps and adjacent forestwas dominated by sweetgum (Liquidambar styracifluaL.) with importance values of 27% and 28%, respectively.There were no loblolly pine seedlings in the adjacent forest, but an average 313per ha in the gaps of the pine-hardwood stands. Within thegaps in both cover types, loblolly pine saplings were lower in stature thancompeting hardwood stems, leading to the conclusion that the gaps may form atemporary pool of pine regeneration. Without further stand disturbance, theprocess of gap closure may reduce the pine component to a secondary status, orperhaps eliminate it altogether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号