首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Humus profiles of Siberia soils under different conditions and models of soil formation are considered in the paper. It is shown that the humus profiles of soils formed in the regions of displacement of landscape and soil borders and developed according to the polygenetic model as well as the soils of synlithogenous type of pedogenesis have a complicated structure. Simple structure of the humus profile characterizes soils developing within the framework of a simple (ideal, normal) model of soil formation.  相似文献   

2.
对西双纳不同面积“龙山”片断干性季节雨林和保护区连续湿性季节雨淋凋落物层土壤动物群落多样性研究表明,土壤动物群落物种丰盛度,多度和多样性的变化不顾在随雨林片断化面积减少而降低的“种-面积效应”,而雨林片断化后因先锋植物(喜阳性)侵入产生的“干暖效应”,使片断雨林凋落物增多,腐殖质,土壤有机质,N,P等元素含量增高,土壤生境条件更有利于土壤动物生存,其群落多样性指数高于连续湿性季节雨林,但2种生境土壤动物群落种-多度模型均表现为对数级模式。  相似文献   

3.
Ecological developments during Holocene age and high atmospheric depositions since industrialization have changed the N dynamics of temperate forest ecosystems. A number of different parameters are used to indicate whether the forests are N‐saturated or not, most common among them is the occurrence of nitrates in the seepage water below the rooting zone. The use of different definitions to describe N saturation implies that the N status of ecosystems is not always appropriately assessed. Data on N dynamics from 53 different German forests were used to classify various development states of forest ecosystems according to the forest ecosystem theory proposed by Ulrich for which N balances of input – (output plus plant N increment) were used. Those systems where N output equals N input minus plant N increment are described as (quasi‐) Steady State Type. Those forests where N output does not equal N input minus plant N increment as in a ‘transient state.’ Forests of the transient state may lose nitrogen from the soil (Degradation Type) or gain nitrogen [e.g., from atmospheric depositions (Accumulation Type)]. Forest ecosystems may occur in four different N states: (a) (quasi‐) Steady State Type with mull type humus, (b) Degradation Type with mull type humus, (c) Accumulation Type with moder type humus, and (d) (quasi‐) Steady State Type with moder type humus. Forests with the (quasi‐) steady state with mull type humus in the forest floor (n= 8) have high‐soil pH values, high N retention by plant increment, high N contents in the mineral soils, and have not undergone large changes in the N status. Forests of the Degradation Type lose nitrogen from the mineral soil (currently degradation is occurring on one site). Most forests that have moder or mor type humus and low‐soil pH values, and low N contents in the mineral soil have gone through the transient state of organic matter loss in the mineral soils. They accumulate organic matter in the forest floor (accumulation phase, currently 21 sites are accumulating 6–21 kg N ha?1 yr?1) or have reached a new (quasi‐) steady state with moder/mor type humus (n= 15). N retention in the accumulation phase has significantly increased in soil with N deposition (r2= 0.38), soil acidity (considering thickness of the forest floor as indices of soil acidity, r2= 0.43) and acid deposition (sulfate deposition, r2= 0.39). Retention of N (4–20 kg N ha?1 yr?1) by trees decreased and of soils increased with a decrease in the availability of base cations indicating the important role of trees for N retention in less acid soils and those of soils in more acid soils. Ecosystem theory could be successfully applied on the current data to understand the dynamics of N in temperate forest ecosystems.  相似文献   

4.
Organic phosphorus (P) is an important component of boreal forest humus soils, and its concentration has been found to be closely related to the concentration of iron (Fe) and aluminium (Al). We used solution and solid state 31P NMR spectroscopy on humus soils to characterize organic P along two groundwater recharge and discharge gradients in Fennoscandian boreal forest, which are also P sorption gradients due to differences in aluminium (Al) and iron (Fe) concentration in the humus. The composition of organic P changed sharply along the gradients. Phosphate diesters and their degradation products, as well as polyphosphates, were proportionally more abundant in low Al and Fe sites, whereas phosphate monoesters such as myo-, scyllo- and unknown inositol phosphates dominated in high Al and Fe soils. The concentration of inositol phosphates, but not that of diesters, was positively related to Al and Fe concentration in the humus soil. Overall, in high Al and Fe sites the composition of organic P seemed to be closely associated with stabilization processes, whereas in low Al and Fe sites it more closely reflected inputs of organic P, given the dominance of diesters which are generally assumed to constitute the bulk of organic P inputs to the soil. These gradients encompass the broad variation in soil properties detected in the wider Fennoscandian boreal forest landscape, as such our findings provide insight into the factors controlling P biogeochemistry in the region but should be of relevance to boreal forests elsewhere.  相似文献   

5.
The synecological analysis of bacterial communities from the Protva River floodplain biogeocenosis showed that all of their horizons contain spirilla, which are typical hydrobionts, and pigmented coryneform bacteria associated with the herbaceous plants of the floodplain meadows. The alluvial meadow soils of the inundated regions of the floodplain differ from the unflooded regions of the floodplain in that they have a more diverse bacterial population that is continuously distributed over the soil profile.  相似文献   

6.
The organic matter reserves and the soil humus state are assessed in three types of landscapes of the middle taiga (Karelia). Peat soils are the main organic matter reservoir. Hence, the greater their area, the higher the organic matter reserves in a particular landscape. The organic matter stocks in the group of semihydromorphic and hydromorphic soils clearly correlate with the degree of their waterlogging. The distribution of organic matter reserves within these soils depends on the ratio between the areas of boggy forests and open mires. The forest supporting quality of the soil is related to the organic matter composition and parent rock (the properties of the soil mineral horizons) rather than to the organic matter stocks. The data obtained may be used for assessing the forest supporting qualities of the soils and the basis for estimating the carbon budget in the landscapes.  相似文献   

7.
采自辽宁省不同地区的15对棕壤型菜园土肥、瘦地及其各粒级微团聚体的有机质储量和腐殖质结合形态的研究表明,肥地及其各粒级微团聚体的有机质和各结合形态腐殖质的含量与松结态腐殖质占有机质总量的比例均比瘦地及其各相应粒级微团聚体的高,稳结态腐殖质的比例较小,紧结态腐殖质的比例肥瘦地大体相当.无论肥地或瘦地,小粒级微团聚体的有机质和各结合形态腐殖质的含量及松、稳结态腐殖质占有机质总量的比例均较大粒级的高,而紧结态腐殖质则相反,表明大、小粒级微团聚体具有不同的肥力学意义  相似文献   

8.
Three main succession lines are found to occur on poor sandy soils in a blown drift sand landscape in the Netherlands. Site factors – organic matter, parent material, soil moisture regime and relief – were determined. Site types, specific combinations of these site factors, are defined. For five site types succession was studied. The primary criterion for separating succession lines and for delineating the successional stages, was the site factor organic matter and the second criterion, groundwater level. Influence of organic matter on succession was significant on site types with a buried podzol. Species composition on these site types indicated richer sites than the species composition on the site types without a buried podzol. Groundwater level of about 1m with gleyzone was critical for species requiring moist sites. Within a succession line vegetation stages are characterized and the potential forest type is presumed. The stages were related to humus form and soil development. Litter of dominant species was suggested to be the main criterion for the humus form. Initial and older vegetation stages were linked to development of soil horizons. The defined site types, their soil development and relationships with the succession lines clarify spatial and temporal structure and diversity of vegetation, and herewith is the basic information for clarifying the heterogeneity and potential biodiversity of this blown drift sand landscape.  相似文献   

9.
异质景观条件下江汉平原土壤的空间分异   总被引:1,自引:0,他引:1  
景观异质与土壤分异息息相关。以DEM数据为基础,以海拔50m、100m为界,将江汉平原划分为平原湖区景观、平缓岗地景观及起伏丘陵景观3种类型。在ArcG IS 10支持下,将江汉平原土壤图与景观类型图进行叠置分析,提取不同景观类型片区各土壤亚类斑块周长、面积等信息,计算了各景观类型片区各土壤亚类的分维数、平均斑块面积、稳定度等信息,定量分析了江汉平原各景观类型片区土壤空间分异特征,结论如下:(1)不同景观类型区各土壤亚类分布差异明显,起伏丘陵景观区主要以红壤和黄棕壤地带性土壤为主;平原湖区潮土和水稻土等耕作土非常发育;平缓岗地区地带性土壤和耕作土壤平分秋色。(2)连片性较好的土壤亚类呈现不同的景观选择性:耕作土集中分布于平原湖区景观片区;地带性土壤多集中分布于丘陵和岗地景观片区。(3)平原湖区面积很大,各类土壤都有发育的空间,土壤亚类之间分维数和稳定度差别比较大;平缓岗地景观区由于面积非常局限,土壤亚类发生发育受到空间的限制,边界破碎化,分维数平均都比较大,斑块镶嵌结构均比较复杂,稳定度差别较小。(4)主要土壤亚类的分维数和稳定性指数值一定程度地反映了各主要土壤亚类的最匹配的景观类型,即能够提供其发生发育的最佳条件。研究有利于深入认识土壤形成和演化规律,为土壤资源的合理利用及定向培育服务。  相似文献   

10.
The hypothesis that Pinus sylvestris L. root and mycorrhizosphere development positively influences bacterial community-linked carbon source utilization, and drives a concomitant reduction in mineral oil levels in a petroleum hydrocarbon- (PHC-) contaminated soil was confirmed in a forest ecosystem-based phytoremediation simulation. Seedlings were grown for 9 months in large petri dish microcosms containing either forest humus or humus amended with cores of PHC-contaminated soil. Except for increased root biomass in the humus/PHC treatment, there were no other significant treatment-related differences in plant growth and needle C and N status. Total cell and culturable bacterial (CFU) densities significantly increased in both rhizospheres and mycorrhizospheres that actively developed in the humus and PHC-contaminated soil. Mycorrhizospheres (mycorrhizas and extramatrical mycelium) supported the highest numbers of bacteria. Multivariate analyses of bacterial community carbon source utilization profiles (Biolog GN microplate) from different rhizosphere, mycorrhizosphere, and bulk soil compartments, involving principal component and correspondence analysis, highlighted three main niche-related groupings. The respective clusters identified contained bacterial communities from (i) unplanted bulk soils, (ii) planted bulk PHC and rhizospheres in PHC-contaminated soils, and (iii) planted bulk humus and rhizosphere/mycorrhizosphere-influenced humus, and mycorrhizosphere-influenced PHC contaminated soil. Correspondence analysis allowed further identification of amino acid preferences and increased carboxylic/organic acid preferences in rhizosphere and mycorrhizosphere compartments. Decreased levels of mineral oil (non-polar hydrocarbons) were detected in the PHC-contaminated soil colonized by pine roots and mycorrhizal fungi. These data further support our view that mycorrhizosphere development and function plays a central role in controlling associated bacterial communities and their degradative activities in lignin-rich forest humus and PHC-contaminated soils.  相似文献   

11.
Antagonistic bacteria represent promising biocontrol agents for improving forest production in seedling nurseries or forest soils. The fate of an introduced mer/luc-tagged antagonistic Pseudomonas fluorescens 31K3 was monitored in the rhizosphere of silver birch (Betula pendula) seedlings grown in microcosms containing forest humus or nursery peat. The inoculated strain (10(8) cfu g(-1) soil) was unable to establish in significant numbers in either soil type and turned nonculturable in humus. Detection in both soils was possible only via luminescence of enrichment cultures 80 days post-inoculation. Despite low P. fluorescens survival, inoculation had a positive effect on seedling growth. Limited impact of inoculation on the indigenous microbial communities was identified following analyses of respiration and denitrification potential, community-level physiological profiles and molecular fingerprinting of fungi and eubacteria, and Pseudomonas community structures. The minor changes observed in the indigenous microbial communities, including mycorrhiza development, were not consistent between humus and peat growth substrates. It was concluded that the rhizosphere-related microbial communities developed in both of these highly organic soil systems are highly buffered against introduction of foreign bacteria.  相似文献   

12.
Large larval populations of the scarabaeid beetle Heteronyx piceus Blanchard that occur under peanuts, but not maize, in the South Burnett region of Australia are the result of a high rate and prolonged period of egg production by females feeding on peanut foliage. Heteronyx piceus is a relatively sedentary species and movement of females between adjacent fields is low. Populations of H. piceus varied markedly with landscape position. High larval populations are more likely (1 in 4 chance) to be encountered on the 'scrub' soils in the upper parts of the landscape than in the 'forest' soils in the lower half (1 in 20 chance), indicating that soil type/landscape position is a key risk factor in assessing the need for management intervention. The studies indicate that, because of the species' sedentary nature, the most meaningful population entity for management of H. piceus is the individual field, rather than the whole-farm or the region. The implications of this population ecology for management of the pest are discussed in relation to control strategies.  相似文献   

13.
Apple replant disease (ARD) is common to all major apple-growing regions in the world. It occurs when new apple trees are replanted on sites where previously the same or closely related crop species were grown. Biotic (fungi, bacteria and nematodes) and abiotic soil factors (poor soil structure, nutrition) contribute to the development and severity of ARD. However, the aetiology of ARD and effects on higher trophic levels are still unknown. In that sense, Collembola might play an important role, since they are one of the dominant mesofauna groups in many soils. They act as decomposer, fungivores and predators, representing different trophic levels in soil food webs. Therefore, any effect of ARD on the occurrence of Collembola could have ecological impacts on the soil quality and health. Here, we examined the colonization behaviour of two Collembolan species, Folsomia candida and Sinella curviseta, in choice tests and population growth tests using Apple Replant Diseased soil (ARD) and non-ARD soil samples from different field sites and standardized laboratory bioassays. Additionally, Collembola behaviour was quantified by continuous video observations to investigate short-term behavioural changes. Results showed that both Collembolan species significantly preferred colonization of the non-ARD soils compared with ARD soils, independent of the origin of the soil samples or specific disinfection treatments. Moreover, the detailed video analysis of the foraging behaviour indicates rapid colonization of soil samples and low dispersal rates. Most likely, volatile compounds and to a lesser extent feeding stimulants play a vital role for the colonization process for both Collembolan species. Finally, results showed negative effects of ARD on population growth of both Collembolan species already after an 8-week period, implying strong nutritional deficiencies in ARD affected soils. The hypothesis that ARD causing microorganisms directly affected orientation, colonization and population development of Collembola is discussed.  相似文献   

14.
The influence of depth and humus content of soil, on the presence of keratinophilic fungi in 4 layers (1-10 cm, 11-25 cm, 26-40 cm, 41-55 cm) of carbonate meadow, chernozem carbonate meadow and carbonate alluvial soils was studied. Different keratinophilic fungi were found not only in individual soils but also in different layers of the same soil. The greatest number and quantity occurred in soil with highest humus content. These fungi were present in greatest amount in the superficial layers (1-10 cm and 11-25 cm) of all soils investigated.  相似文献   

15.
Initial soil formation under primary stands of Scots pine (planted) and European black poplar (natural) on calcareous dune sands was studied, paying particular attention to the humus forms and their spatial variability. The stands studied are both about 80 years old and are situated, at close distance, in the coastal dunes near Wassenaar (the Netherlands).Under Scots pine, soils with a mor-type humus form were observed, exhibiting slight podzolisation. Soil variability is rather slight and soil development is comparable to that under primary Scots pine stands on non-calcareous inland drift sands. Under poplar, mull-type humus forms occur which tend towards moder and exhibit a markedly stronger litter decomposition and bioturbation. In contrast to the soils under pine, soil variability is considerable. Results from chemical analyses of two representative soil profiles are in conformance with these trends.It is concluded that the observed trends in soil formation are in line with those described in the literature, and that a period of 80 years is sufficient for a strong vegetation related divergence in soil properties. Soil variability within the stands probably results from redistribution of litter by wind and/or gravity and will be rather site-dependent.  相似文献   

16.
纯林长期生长或多代连栽必然会导致土壤腐殖质含量和构成发生异化,探究这种异化特征及其与土壤其他性质的关系可以为纯林管理或混交改造提供科学依据。通过对半干旱黄土丘陵区南泥湾林场8种典型纯林土壤腐殖质及其他性质进行系统检测,结果表明:(1)侧柏林土壤腐殖质含量最高(34.61 g/kg),腐殖化程度和稳定性一般;白榆和白桦林土壤的腐殖质含量中等(19.69—23.58 g/kg)、腐殖化程度和稳定性最佳;茶条槭和小叶杨林土壤的腐殖质含量(20.59—22.53 g/kg)和构成均为中等水平;油松、沙棘和刺槐林土壤的腐殖质质量较低(11.77—13.81 g/kg),且腐殖化程度较低,稳定性相对最差;(2)与胡敏酸含量存在显著相互促进作用(P0.05)的土壤性质为CEC、N、微生物量和蛋白酶活性(相关系数0.769—0.926,下同),存在显著相互抑制作用的为有效Cu(-0.793);与富啡酸存在显著相互促进作用的为N、CEC、微生物量、蔗糖酶和磷酸酶活性(0.836—0.955),存在显著相互抑制作用的为有效Cu(-0.822);与胡敏素存在显著相互促进作用的为N、CEC、微生物量、磷酸酶活性和有效Zn(0.766—0.951),存在显著相互抑制作用的为脱氢酶活性(-0.784)。(3)腐殖质构成与其他性质的相关性均不显著(P0.05),其中相对有利于提高胡敏酸/腐殖酸含量之比的土壤性质为蛋白酶、蔗糖酶和过氧化氢酶活性,而不利的是脱氢酶活性;相对有利于提高胡敏酸/富啡酸含量之比的为速效K、CEC和脲酶活性,而不利的是脱氢酶活性。(4)总体而言土壤腐殖质含量较之腐殖质构成与其他性质之间具有更大的相关性;向土壤增施N肥可以促进腐殖质的形成,增加K肥则有利于腐殖质构成的改善,而通过混交改造或增加林下植被是促进纯林土壤腐殖质化过程和解决土壤退化的根本措施。  相似文献   

17.
In-source pyrolysis-field ionization mass spectrometry (Py-FIMS), in combination with complementary elemental, wet-chemical, biochemical, and microbiological data, has been used to characterize humus composition and dynamics in soil samples from several field plots that have been cultivated in long-term experiments under different management conditions. Thermograms and Py-FI mass spectra of whole-soil samples from field plots that under very different management show significant differences in humus composition, which may be due to varying stages of decomposition of plant residues and humus genesis. The intensity of soil management significantly affects high-molecular-weight subunits such as dimeric lignin0, arylalkyl-, and aliphatic constituents, even though humus quantity is similar for plots under more practically oriented management, such as crop rotation. The differences in molecular humus subunits of soil samples from different plots, in combination with complementary data, demonstrated that less parent (i.e. primary) material is incorporated in the humus matrix under intense soil management conditions. Samples from different field plots can thus be objectively differentiated on the basis of humus properties using multivariate statistical techniques such as principal component and cluster analyses. This statistical discrimination, using Py-FI mass spectra of the samples, corresponds well with microbial biomasses but is somewhat inconsistent with elemental data and results of chemical degradation procedures. The microflora populations in soils under intense management are limited by low availability and/or quality of carbon substrates. The resulting restricted internal nitrogen cycle causes those soils to have a reduced capacity to immobilize N, leading to relative enrichment of heterocyclic nitrogen compounds that are resistant to mineralization.  相似文献   

18.
The soil arthropoda population of northern taiga was investigated in the primary pine forest which had not been subject to any fire for at least 100 years and at two burnt sites of different opost-fire successions. The population of the primary nonburnt forest is represented by 54 microarthropoda species. The mesofauna is composed almost exceptionally of spiders: 10 species of them were identified. The foliage underwood develops on young burnt sites; the soil is covered with thick mossy cushions, with spots of reedgrass. The density of collembolan and oribatid mite population there is about two times lower than in nonburnt pine forests; gamasid mites are absent. The microarthropoda population is represented by the species which are common in the surrounding primary pine forests. The mesofauna consists mainly of ground beetles, open-land predators, and myxophytophagans. Spiders are represented by some widespread mobile species of low density. A mixed forest with mossy-lichen cover is formed on old burnt sites (of an age of about 50 years). Diversity and density of microarthropoda increase reaching the values characteristic of the primary forest; however, the species composition and dominance are still different. The fraction of spiders in mesofauna increases. The ground beetle population is the most abundant and diverse.  相似文献   

19.
The synecological analysis of bacterial communities from the Protva River flood-plain biogeocenosis showed that all of the horizons contain spirilla, which are typical hydrobionts, and pigmented coryneform bacteria associated with the herbaceous plants of the flood-plain meadows. The alluvial meadow soils of the inundated regions of the floodplain differed from the unflooded regions of the flood-plain in that they had a more diverse bacterial population continuously distributed over the soil profile.  相似文献   

20.
Question: Do tree species, with different litter qualities, affect the within‐forest distribution of forest understorey species on intermediate to base‐rich soils? Since habitat loss and fragmentation have caused ancient forest species to decline, those species are the main focus of this study. Location: Three ancient forests, along a soil gradient from acidification‐sensitive to base‐rich, were studied: Limbrichterbosch and Savelsbos in The Netherlands and Holtkrat in Denmark. Methods: Canopy and soil surveys along transects generated data for Redundancy Analysis on tree – humus relationships. We analysed the distribution of forest plant species with Canonical Correspondence Analysis. The explanatory factors were soil characteristics (pH, organic matter, loam content and thickness of the humus layers), external crown projection, ground water and canopy data. We further analysed the relationship between forest species and humus characteristics with Spearman correlations. Results: Tree species have a significant impact on humus characteristics through the nature of their litter. Humus characteristics significantly explain the distribution of forest understorey species. The pH of the first 25 cm mineral soil and the thickness of the F‐ (fermentation) layer are the primary factors affecting the distribution of ancient forest species. Conclusion: This study indicates that the species composition of the forest canopy affects the distribution of forest understorey species. Ancient forest species are more abundant and frequent underneath trees with base‐rich litter. On acidification‐sensitive soils these relationships were stronger than on more base‐rich, loamy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号